Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Science ; 383(6686): 988-992, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422128

ABSTRACT

Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula. Emission lines are detected from the PDR; modeling their kinematics and excitation allowed us to constrain the physical conditions within the gas. We quantified the mass-loss rate induced by the FUV irradiation and found that it is sufficient to remove gas from the disk in less than a million years. This is rapid enough to affect giant planet formation in the disk.

2.
Cereb Cortex ; 33(16): 9566-9582, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37386697

ABSTRACT

The auditory cortex exerts a powerful, yet heterogeneous, effect on subcortical targets. Auditory corticofugal projections emanate from layers 5 and 6 and have complementary physiological properties. While several studies suggested that layer 5 corticofugal projections branch widely, others suggested that multiple independent projections exist. Less is known about layer 6; no studies have examined whether the various layer 6 corticofugal projections are independent. Therefore, we examined branching patterns of layers 5 and 6 auditory corticofugal neurons, using the corticocollicular system as an index, using traditional and novel approaches. We confirmed that dual retrograde injections into the mouse inferior colliculus and auditory thalamus co-labeled subpopulations of layers 5 and 6 auditory cortex neurons. We then used an intersectional approach to relabel layer 5 or 6 corticocollicular somata and found that both layers sent extensive branches to multiple subcortical structures. Using a novel approach to separately label layers 5 and 6 axons in individual mice, we found that layers 5 and 6 terminal distributions partially spatially overlapped and that giant terminals were only found in layer 5-derived axons. Overall, the high degree of branching and complementarity in layers 5 and 6 axonal distributions suggest that corticofugal projections should be considered as 2 widespread systems, rather than collections of individual projections.


Subject(s)
Auditory Cortex , Inferior Colliculi , Mice , Animals , Axons/physiology , Inferior Colliculi/physiology , Auditory Cortex/physiology , Neurons/physiology , Thalamus/physiology , Auditory Pathways/physiology
3.
Nature ; 621(7977): 56-59, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37364766

ABSTRACT

Forty years ago, it was proposed that gas-phase organic chemistry in the interstellar medium can be initiated by the methyl cation CH3+ (refs. 1-3), but so far it has not been observed outside the Solar System4,5. Alternative routes involving processes on grain surfaces have been invoked6,7. Here we report James Webb Space Telescope observations of CH3+ in a protoplanetary disk in the Orion star-forming region. We find that gas-phase organic chemistry is activated by ultraviolet irradiation.

4.
Science ; 370(6523): 1450-1453, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33335061

ABSTRACT

Observations of neutron-star mergers with distinct messengers, including gravitational waves and electromagnetic signals, can be used to study the behavior of matter denser than an atomic nucleus and to measure the expansion rate of the Universe as quantified by the Hubble constant. We performed a joint analysis of the gravitational-wave event GW170817 with its electromagnetic counterparts AT2017gfo and GRB170817A, and the gravitational-wave event GW190425, both originating from neutron-star mergers. We combined these with previous measurements of pulsars using x-ray and radio observations, and nuclear-theory computations using chiral effective field theory, to constrain the neutron-star equation of state. We found that the radius of a 1.4-solar mass neutron star is [Formula: see text] km at 90% confidence and the Hubble constant is [Formula: see text] at 1σ uncertainty.

5.
Cells ; 9(12)2020 11 28.
Article in English | MEDLINE | ID: mdl-33260532

ABSTRACT

Recent data have found that aging-related hearing loss (ARHL) is associated with the development of Alzheimer's Disease (AD). However, the nature of the relationship between these two disorders is not clear. There are multiple potential factors that link ARHL and AD, and previous investigators have speculated that shared metabolic dysregulation may underlie the propensity to develop both disorders. Here, we investigate the distribution of serum lipidomic biomarkers in AD subjects with or without hearing loss in a publicly available dataset. Serum levels of 349 known lipids from 16 lipid classes were measured in 185 AD patients. Using previously defined co-regulated sets of lipids, both age- and sex-adjusted, we found that lipid sets enriched in phosphatidylcholine and phosphatidylethanolamine showed a strong inverse association with hearing loss. Examination of biochemical classes confirmed these relationships and revealed that serum phosphatidylcholine levels were significantly lower in AD subjects with hearing loss. A similar relationship was not found in normal subjects. These data suggest that a synergistic relationship may exist between AD, hearing loss and metabolic biomarkers, such that in the context of a pathological state such as AD, alterations in serum metabolic profiles are associated with hearing loss. These data also point to a potential role for phosphatidylcholine, a molecule with antioxidant properties, in the underlying pathophysiology of ARHL in the context of AD, which has implications for our understanding and potential treatment of both disorders.


Subject(s)
Alzheimer Disease/blood , Biomarkers/blood , Hearing Loss/blood , Lipids/blood , Aged , Aging/blood , Antioxidants/metabolism , Female , Humans , Lipidomics/methods , Male , Phosphatidylcholines/blood , Phosphatidylethanolamines/blood
6.
Nat Commun ; 11(1): 4129, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32807780

ABSTRACT

Kilonovae produced by the coalescence of compact binaries with at least one neutron star are promising standard sirens for an independent measurement of the Hubble constant (H0). Through their detection via follow-up of gravitational-wave (GW), short gamma-ray bursts (sGRBs) or optical surveys, a large sample of kilonovae (even without GW data) can be used for H0 contraints. Here, we show measurement of H0 using light curves associated with four sGRBs, assuming these are attributable to kilonovae, combined with GW170817. Including a systematic uncertainty on the models that is as large as the statistical ones, we find [Formula: see text] and [Formula: see text] for two different kilonova models that are consistent with the local and inverse-distance ladder measurements. For a given model, this measurement is about a factor of 2-3 more precise than the standard-siren measurement for GW170817 using only GWs.

7.
Orphanet J Rare Dis ; 8: 59, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23587236

ABSTRACT

BACKGROUND: Primary autosomal recessive microcephaly (MCPH) is a rare neurodevelopmental disorder that results in severe microcephaly at birth with pronounced reduction in brain volume, particularly of the neocortex, simplified cortical gyration and intellectual disability. Homozygous mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2 are the cause of MCPH3. Despite considerable interest in MCPH as a model disorder for brain development, the underlying pathomechanism has not been definitively established and only four pedigrees with three CDK5RAP2 mutations have been reported. Specifically for MCPH3, no detailed radiological or histological descriptions exist. METHODS/RESULTS: We sought to characterize the clinical and radiological features and pathological cellular processes that contribute to the human MCPH3 phenotype. Haplotype analysis using microsatellite markers around the MCPH1-7 and PNKP loci in an Italian family with two sons with primary microcephaly, revealed possible linkage to the MCPH3 locus. Sequencing of the coding exons and exon/intron splice junctions of the CDK5RAP2 gene identified homozygosity for the novel nonsense mutation, c.4441C > T (p.Arg1481*), in both affected sons. cMRI showed microcephaly, simplified gyral pattern and hypogenesis of the corpus callosum. The cellular phenotype was assessed in EBV-transformed lymphocyte cell lines established from the two affected sons and compared with healthy male controls. CDK5RAP2 protein levels were below detection level in immortalized lymphocytes from the patients. Moreover, mitotic spindle defects and disrupted γ-tubulin localization to the centrosome were apparent. CONCLUSION: These results suggest that spindle defects and a disruption of centrosome integrity play an important role in the development of microcephaly in MCPH3.


Subject(s)
Genes, Recessive , Intracellular Signaling Peptides and Proteins/genetics , Microcephaly/genetics , Mutation , Nerve Tissue Proteins/genetics , Blotting, Western , Cell Cycle Proteins , Cell Line, Transformed , Exons , Female , Haplotypes , Homozygote , Humans , Introns , Magnetic Resonance Imaging , Male , Microcephaly/pathology , Pedigree , Phenotype , Polymerase Chain Reaction
8.
Cereb Cortex ; 23(9): 2245-60, 2013 Sep.
Article in English | MEDLINE | ID: mdl-22806269

ABSTRACT

Homozygous mutations in the cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 cause primary autosomal recessive microcephaly (MCPH). MCPH is characterized by a pronounced reduction of brain volume, particularly of the cerebral cortex, and mental retardation. Though it is a rare developmental disorder, MCPH has moved into the spotlight of neuroscience because of its proposed central role in stem-cell biology and brain development. Investigation of the neural basis of genetically defined MCPH has been limited to animal studies and neuroimaging of affected patients as no neuropathological studies have been published. In the present study, we depict the spatiotemporal expression of CDK5RAP2 in the developing brain of mouse and human. We found intriguing concordance between regions of high CDK5RAP2 expression in the mouse and sites of pathology suggested by neuroimaging studies in humans and mouse. Our findings in human tissue confirm those in mouse tissues, underlining the function of CDK5RAP2 in cell proliferation and arguing for a conserved role of this protein in the development of the mammalian cerebral cortex.


Subject(s)
Brain/embryology , Brain/metabolism , Cell Cycle Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Animals , Fetus/metabolism , Humans , Mice , Microcephaly/embryology , Microcephaly/metabolism
9.
Ann Neurol ; 72(4): 536-49, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23109148

ABSTRACT

OBJECTIVE: Activated microglia play a central role in the inflammatory and excitotoxic component of various acute and chronic neurological disorders. However, the mechanisms leading to their activation in the latter context are poorly understood, particularly the involvement of N-methyl-D-aspartate receptors (NMDARs), which are critical for excitotoxicity in neurons. We hypothesized that microglia express functional NMDARs and that their activation would trigger neuronal cell death in the brain by modulating inflammation. METHODS AND RESULTS: We demonstrate that microglia express NMDARs in the murine and human central nervous system and that these receptors are functional in vitro. We show that NMDAR stimulation triggers microglia activation in vitro and secretion of factors that induce cell death of cortical neurons. These damaged neurons are further shown to activate microglial NMDARs and trigger a release of neurotoxic factors from microglia in vitro, indicating that microglia can signal back to neurons and possibly induce, aggravate, and/or maintain neurologic disease. Neuronal cell death was significantly reduced through pharmacological inhibition or genetically induced loss of function of the microglial NMDARs. We generated Nr1 LoxP(+/+) LysM Cre(+/-) mice lacking the NMDAR subunit NR1 in cells of the myeloid lineage. In this model, we further demonstrate that a loss of function of the essential NMDAR subunit NR1 protects from excitotoxic neuronal cell death in vivo and from traumatic brain injury. INTERPRETATION: Our findings link inflammation and excitotoxicity in a potential vicious circle and indicate that an activation of the microglial NMDARs plays a pivotal role in neuronal cell death in the perinatal and adult brain.


Subject(s)
Brain/growth & development , Brain/pathology , Cell Death/drug effects , Inflammation/chemically induced , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/agonists , Animals , Brain Injuries/pathology , Calcium/metabolism , Cell Death/physiology , Cell Survival/physiology , Cells, Cultured , Culture Media, Conditioned , Humans , Ibotenic Acid/toxicity , Immunohistochemistry , Inflammation/pathology , Male , Mice , Mice, Knockout , Microglia/drug effects , Microscopy, Confocal , Neocortex/pathology , Patch-Clamp Techniques , Reactive Oxygen Species , Stroke/pathology
10.
Neurol Res ; 34(7): 664-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22735032

ABSTRACT

OBJECTIVES: Gene expression analysis via quantitative real-time PCR (qPCR) is a key approach in biological and medical research. Here, variations between runs and samples are compensated for by in-parallel analysis of reference genes, which require a most stable expression throughout all samples and experimental procedures to function as internal standards. In reality, there is no universal reference gene; but rather, assumed reference genes vary widely among various cell types. This demands an evaluation of reference genes for each specific experimental purpose, especially in the case of developmental studies. The aim of the present study was to identify suitable reference genes for gene expression analysis in the developing murine brain neocortex in vivo and in mouse embryonic stem cells (mESC) throughout differentiation in vitro. METHODS: The five candidate genes Actb, 18s, Gapdh, Hprt, and RpII were analyzed throughout development in vivo and in vitro using the quartiles of C(q) values, fold change, coefficient of variation (CV) and the difference between maximum minus twofold standard deviation and mean as the criteria to evaluate their expression stability. RESULTS: We found that RpII was the most stable expressed gene in mESC throughout differentiation, while in the developing murine neocortex Gapdh showed the highest expression stability. CONCLUSIONS: Based on our results, we suggest for gene expression analysis in the context of neurodevelopment the usage of RpII as a reference gene for mESC and Gapdh or Hprt for the murine neocortex.


Subject(s)
Brain/cytology , Cell Differentiation/genetics , Embryonic Stem Cells/physiology , Gene Expression Regulation, Developmental , Genetic Association Studies , Actins/biosynthesis , Actins/genetics , Animals , Animals, Newborn , Brain/embryology , Brain/physiology , Cells, Cultured , Female , Genes, Essential/genetics , Genetic Association Studies/methods , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/biosynthesis , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Hypoxanthine Phosphoribosyltransferase/biosynthesis , Hypoxanthine Phosphoribosyltransferase/genetics , Mice , Mice, Inbred C57BL , Pregnancy , RNA Polymerase II/biosynthesis , RNA Polymerase II/genetics , RNA, Ribosomal, 18S/biosynthesis , RNA, Ribosomal, 18S/genetics
11.
Cell Mol Life Sci ; 68(10): 1719-36, 2011 May.
Article in English | MEDLINE | ID: mdl-21327915

ABSTRACT

Cyclin dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) has gained attention in the last years following the discovery, in 2005, that recessive mutations cause primary autosomal recessive microcephaly. This disease is seen as an isolated developmental defect of the brain, particularly of the cerebral cortex, and was thus historically also referred to as microcephalia vera. Unraveling the pathomechanisms leading to this human disease is fascinating scientists because it can convey insight into basic mechanisms of physiologic brain development (particularly of cortex formation). It also finds itself in the spotlight because of its implication in trends in mammalian evolution with a massive increase in the size of the cerebral cortex in primates. Here, we provide a timely overview of the current knowledge on the function of CDK5RAP2 and mechanisms that might lead to disease in humans when the function of this protein is disturbed.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Cell Cycle Proteins , Centrioles/metabolism , Gene Knockdown Techniques , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Microcephaly/genetics , Microcephaly/pathology , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tubulin/chemistry , Tubulin/metabolism
12.
Prog Neurobiol ; 90(3): 363-83, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19931588

ABSTRACT

Autosomal recessive primary microcephaly (MCPH), historically referred to as Microcephalia vera, is a genetically and clinically heterogeneous disease. Patients with MCPH typically exhibit congenital microcephaly as well as mental retardation, but usually no further neurological findings or malformations. Their microcephaly with grossly preserved macroscopic organization of the brain is a consequence of a reduced brain volume, which is evident particularly within the cerebral cortex and thus results to a large part from a reduction of grey matter. Some patients with MCPH further provide evidence of neuronal heterotopias, polymicrogyria or cortical dysplasia suggesting an associated neuronal migration defect. Genetic causes of MCPH subtypes 1-7 include mutations in genes encoding microcephalin, cyclin-dependent kinase 5 regulatory associated protein 2 (CDK5RAP2), abnormal spindle-like, microcephaly associated protein (ASPM), centromeric protein J (CENPJ), and SCL/TAL1-interrupting locus (STIL) as well as linkage to the two loci 19q13.1-13.2 and 15q15-q21. Here, we provide a timely overview of current knowledge on mechanisms leading to microcephaly in humans with MCPH and abnormalities in cell division/cell survival in corresponding animal models. Understanding the pathomechanisms leading to MCPH is of high importance not only for our understanding of physiologic brain development (particularly of cortex formation), but also for that of trends in mammalian evolution with a massive increase in size of the cerebral cortex in primates, of microcephalies of other etiologies including environmentally induced microcephalies, and of cancer formation.


Subject(s)
Brain/pathology , Microcephaly/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics , Animals , Genes, Recessive , Genetic Heterogeneity , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...