Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 18: 1287544, 2024.
Article in English | MEDLINE | ID: mdl-38638806

ABSTRACT

Introduction: Assistive technologies for learning are aimed at promoting academic skills, such as reading and mathematics. These technologies mainly embrace mobile and web apps addressed to children with learning difficulties. Nevertheless, most applications lack pedagogical foundation. Additionally, the task of selecting suitable technology for educational purposes becomes challenging. Hence, this protocol posits the psychophysiological assessment of an online method for learning (OML) named Smartick. This platform comprises reading and math activities for learning training. In this protocol, individual monitoring of each child is proposed to determine the progress in learning caused by Smartick. Methods and analysis: One hundred and twelve children aged between 8 and 12 who present reading or math difficulty after a rigorous psychometric evaluation will be recruited. The study comprises four sessions. In sessions 1 and 2, collective and individual psychometric evaluations will be performed, respectively. Reading and mathematical proficiency will be assessed, as well as attentional levels and intellectual quotient. Subsequently, each child will be semi-randomly assigned to either the experimental or control groups. Afterward, a first EEG will be collected for all children in session 3. Then, experimental groups will use Smartick for 3 months, in addition to their traditional learning method. In contrast, control groups will only continue with their traditional learning method. Finally, session 4 will consist of performing a second psychometric evaluation and another EEG, so that psychophysiological parameters can be encountered that indicate learning improvements due to the OML, regardless of the traditional learning method at hand. Discussion: Currently, few studies have validated learning improvement due to assistive technologies for learning. However, this proposal presents a psychophysiological evaluation addressed to children with reading or math difficulties who will be trained with an OML.

2.
Addict Biol ; 29(2): e13381, 2024 02.
Article in English | MEDLINE | ID: mdl-38357782

ABSTRACT

Cocaine use disorder (CUD) is a worldwide public health condition that is suggested to induce pathological changes in macrostructure and microstructure. Repetitive transcranial magnetic stimulation (rTMS) has gained attention as a potential treatment for CUD symptoms. Here, we sought to elucidate whether rTMS induces changes in white matter (WM) microstructure in frontostriatal circuits after 2 weeks of therapy in patients with CUD and to test whether baseline WM microstructure of the same circuits affects clinical improvement. This study consisted of a 2-week, parallel-group, double-blind, randomized controlled clinical trial (acute phase) (sham [n = 23] and active [n = 27]), in which patients received two daily sessions of rTMS on the left dorsolateral prefrontal cortex (lDLPFC) as an add-on treatment. T1-weighted and high angular resolution diffusion-weighted imaging (DWI-HARDI) at baseline and 2 weeks after served to evaluate WM microstructure. After active rTMS, results showed a significant increase in neurite density compared with sham rTMS in WM tracts connecting lDLPFC with left and right ventromedial prefrontal cortex (vmPFC). Similarly, rTMS showed a reduction in orientation dispersion in WM tracts connecting lDLPFC with the left caudate nucleus, left thalamus, and left vmPFC. Results also showed a greater reduction in craving Visual Analogue Scale (VAS) after rTMS when baseline intra-cellular volume fraction (ICVF) was low in WM tracts connecting left caudate nucleus with substantia nigra and left pallidum, as well as left thalamus with substantia nigra and left pallidum. Our results evidence rTMS-induced WM microstructural changes in fronto-striato-thalamic circuits and support its efficacy as a therapeutic tool in treating CUD. Further, individual clinical improvement may rely on the patient's individual structural connectivity integrity.


Subject(s)
Cocaine , Substance-Related Disorders , Humans , Transcranial Magnetic Stimulation/methods , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Dorsolateral Prefrontal Cortex , Double-Blind Method , Treatment Outcome
3.
Sci Data ; 9(1): 133, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361781

ABSTRACT

Cocaine use disorder (CUD) is a substance use disorder (SUD) characterized by compulsion to seek, use and abuse of cocaine, with severe health and economic consequences for the patients, their families and society. Due to the lack of successful treatments and high relapse rate, more research is needed to understand this and other SUD. Here, we present the SUDMEX CONN dataset, a Mexican open dataset of 74 CUD patients (9 female) and matched 64 healthy controls (6 female) that includes demographic, cognitive, clinical, and magnetic resonance imaging (MRI) data. MRI data includes: 1) structural (T1-weighted), 2) multishell high-angular resolution diffusion-weighted (DWI-HARDI) and 3) functional (resting state fMRI) sequences. The repository contains unprocessed MRI data available in brain imaging data structure (BIDS) format with corresponding metadata available at the OpenNeuro data sharing platform. Researchers can pursue brain variability between these groups or use a single group for a larger population sample.


Subject(s)
Cocaine-Related Disorders , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Mexico
4.
Mol Metab ; 10: 1-13, 2018 04.
Article in English | MEDLINE | ID: mdl-29454579

ABSTRACT

OBJECTIVE: The incidence of depression is significantly compounded by obesity. Obesity arising from excessive intake of high-fat food provokes anxiodepressive behavior and elicits molecular adaptations in the nucleus accumbens (NAc), a region well-implicated in the hedonic deficits associated with depression and in the control of food-motivated behavior. To determine the etiology of diet-induced depression, we studied the impact of different dietary lipids on anxiodepressive behavior and metabolic and immune outcomes and the contribution of NAc immune activity. METHODS: Adult C57Bl/6 mice were subjected to isocaloric high-fat/high-sucrose diets (HFD), enriched in either saturated or monounsaturated fat, or a control low-fat diet (LFD). Metabolic responses, anxiodepressive behavior, and plasma and NAc inflammatory markers were assessed after 12 weeks. In separate experiments, an adenoviral construct inhibiting IKKß, an upstream component of the nuclear factor kappa-b (NFkB) pathway, was a priori injected into the NAc. RESULTS: Both HFDs resulted in obesity and hyperleptinemia; however, the saturated HFD uniquely triggered anxiety-like behavior, behavioral despair, hyperinsulinemia, glucose intolerance, peripheral inflammation, and multiple pro-inflammatory signs in the NAc, including reactive gliosis, increased expression of cytokines, antigen-presenting markers and NFкB transcriptional activity. Selective NAc IKKß inhibition reversed the upregulated expression of inflammatory markers, prevented anxiodepressive behavior and blunted compulsive sucrose-seeking in mice fed the saturated HFD. CONCLUSIONS: Metabolic inflammation and NFкB-mediated neuroinflammatory responses in the NAc contribute to the expression of anxiodepressive behavior and heightened food cravings caused by a diet high in saturated fat and sugar.


Subject(s)
Anxiety Disorders/metabolism , Depressive Disorder/metabolism , Food Addiction/metabolism , Nucleus Accumbens/metabolism , Animals , Anxiety Disorders/etiology , Anxiety Disorders/physiopathology , Depressive Disorder/etiology , Depressive Disorder/physiopathology , Diet, High-Fat/adverse effects , Dietary Sucrose/adverse effects , Food Addiction/etiology , Food Addiction/physiopathology , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Nucleus Accumbens/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...