Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 452: 131338, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37027912

ABSTRACT

Microscopic fuel fragments, so-called "hot particles", were released during the 1986 accident at the Chornobyl nuclear powerplant and continue to contaminate the exclusion zone in northern Ukraine. Isotopic analysis can provide vital information about sample origin, history and contamination of the environment, though it has been underutilized due to the destructive nature of most mass spectrometric techniques, and inability to remove isobaric interference. Recent developments have diversified the range of elements that can be investigated through resonance ionization mass spectrometry (RIMS), notably in the fission products. The purpose of this study is to demonstrate the application of multi-element analysis on hot particles as relates to their burnup, particle formation in the accident, and weathering. The particles were analysed with two RIMS instruments: resonant-laser secondary neutral mass spectrometry (rL-SNMS) at the Institute for Radiation Protection and Radioecology (IRS) in Hannover, Germany, and laser ionization of neutrals (LION) at Lawrence Livermore National Laboratory (LLNL) in Livermore, USA. Comparable results across instruments show a range of burnup dependent isotope ratios for U and Pu and Cs, characteristic of RBMK-type reactors. Results for Rb, Ba and Sr show the influence of the environment, retention of Cs in the particles and time passed since fuel discharge.

2.
Sci Rep ; 13(1): 5193, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36997559

ABSTRACT

Fission product Sr, Mo, and Ru isotopes in six 10-µm particles of spent fuel from a pressurized water reactor were analyzed by resonance ionization mass spectrometry (RIMS) and evaluated for utility in nuclear material characterization. Previous measurements on these same samples showed widely varying U, Pu, and Am isotopic compositions owing to the samples' differing irradiation environments within the reactor. This is also seen in Mo and Ru isotopes, which have the added complication of exsolution from the UO2 fuel matrix. This variability is a hindrance to interpreting data from a collection of particles with incomplete provenance since it is not always possible to assign particles to the same batch of fuel based on isotopic analyses alone. In contrast, the measured 90Sr/88Sr ratios were indistinguishable across all samples. Strontium isotopic analysis can therefore be used to connect samples with otherwise disparate isotopic compositions, allowing them to be grouped appropriately for interpretation. Strontium isotopic analysis also provides a robust chronometer for determining the time since fuel irradiation. Because of the very high sensitivity of RIMS, only a small fraction of material in each of the 10 µm samples was consumed, leaving the vast majority still available for other analyses.

3.
Anal Chem ; 93(27): 9505-9512, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34185994

ABSTRACT

Solid samples of spent nuclear fuel were analyzed for actinide isotopic composition by resonance ionization mass spectrometry. Isotopes of U, Pu, and Am were simultaneously quantified using a new method that removes and/or resolves the isobaric interferences at 238U/238Pu and 241Pu/241Am without sample preparation other than cutting and mounting small (∼10 µm) samples. Trends in burnup and neutron capture product distributions were correlated with the sampling positions inside the reactor. The results show the skin effect, in which the core and near-edge regions of a fuel pellet exhibit strong differences in actinide concentrations and isotope distributions due to differences in the neutron energy spectra between the pellet rim and the core. While no elemental concentration measurements were made, the ability to measure the 238Pu/239Pu ratio in the presence of a 7400× excess of 238U enabled an estimate of the enhancement in Pu concentration due to the skin effect at the rim of the pellet.


Subject(s)
Plutonium , Mass Spectrometry , Physical Phenomena , Plutonium/analysis
4.
J Environ Radioact ; 195: 9-19, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30237079

ABSTRACT

When post-irradiation materials from the nuclear fuel cycle are released to the environment, certain isotopes of actinides and fission products carry signatures of irradiation history that can potentially aid a nuclear forensic investigation into the material's provenance. In this study, combinations of Pu, Cs, and Ba isotope ratios that produce position (in the reactor core) independent monitors of irradiation history in spent light water reactor fuel are identified and explored. These position independent monitors (PIMs) are modeled for various irradiation scenarios using automated depletion codes as well as ordinary differential equation solutions to approximate nuclear physics models. Experimental validation was performed using irradiated low enriched uranium oxide fuel from a light water reactor, which was sampled at 8 axial positions from a single rod. Plutonium, barium and cesium were chemically separated and isotope ratio measurements of the separated solutions were made by quadrupole and multi-collector inductively coupled mass spectrometry (Cs and Pu, respectively) and thermal ionization mass spectrometry (Ba). The effect of axial variations in neutron fluence and energy spectrum are evident in the measured isotope ratios. Two versions of a combined Pu and Cs based PIM are developed. A linear PIM model, which can be used to solve for irradiation time is found to work well for natural U fuel with <10% 240Pu and known or short cooling times. A non-linear PIM model, which cannot be solved explicitly for irradiation time without additional information, can nonetheless still group samples by irradiation history, including high burnup LEU fuel with unknown cooling time. 137Ba/138Ba is also observed to act as a position independent monitor; it is nearly single valued across the sampled fuel rod, indicating that samples sharing an irradiation history (same irradiation time and cooling time) in a reactor despite experiencing different neutron fluxes will have a common 137Ba/138Ba ratio. Modeling of this Ba PIM shows it increases monotonically with irradiation and cooling time, and a confirmatory first order analytical solution is also presented.


Subject(s)
Barium Radioisotopes/analysis , Cesium Radioisotopes/analysis , Nuclear Reactors , Plutonium/analysis , Radiation Monitoring/instrumentation , Mass Spectrometry
5.
Anal Chem ; 90(17): 10551-10558, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30032601

ABSTRACT

Resonance ionization mass spectrometry (RIMS) combines tunable laser spectroscopy with mass spectrometry to provide a high-efficiency means of analyzing solid materials. We previously showed a very high useful yield of 24% for analysis of uranium using three lasers to excite and ionize atoms sputtered from metallic uranium and uranium dioxide. A new resonance ionization scheme using only two lasers achieves a higher useful yield of 38% by accessing both the ground electronic state and a low-lying electronic state of atomic uranium that is significantly populated by sputtering. The major loss channel in analyzing uranium dioxide is the formation of UOx molecules during sputtering. Prebombardment of the surface with 3 keV noble gas ions prior to analysis reduces the surface and results in a sputtered flux with a greatly enhanced proportion of atomic U. This method of surface reduction results in uranium useful yields as high as 6.6% for uranium dioxide analysis, compared to 2% from previous work.

6.
J Phys Chem A ; 122(6): 1584-1591, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29388772

ABSTRACT

High-temperature chemistry in laser ablation plumes leads to vapor-phase speciation, which can induce chemical fractionation during condensation. Using emission spectroscopy acquired after ablation of a SrZrO3 target, we have experimentally observed the formation of multiple molecular species (ZrO and SrO) as a function of time as the laser ablation plume evolves. Although the stable oxides SrO and ZrO2 are both refractory, we observed emission from the ZrO intermediate at earlier times than SrO. We deduced the time-scale of oxygen entrainment into the laser ablation plume using an 18O2 environment by observing the in-growth of Zr18O in the emission spectra relative to Zr16O, which was formed by reaction of Zr with 16O from the target itself. Using temporally resolved plume-imaging, we determined that ZrO formed more readily at early times, volumetrically in the plume, while SrO formed later in time, around the periphery. Using a simple temperature-dependent reaction model, we have illustrated that the formation sequence of these oxides subsequent to ablation is predictable to first order.

7.
Anal Chem ; 89(11): 6224-6231, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28485963

ABSTRACT

Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. We demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar+ and Ga+ sputtering. The useful yield for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.

SELECTION OF CITATIONS
SEARCH DETAIL
...