Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 3509, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35717338

ABSTRACT

In the wake of rapid CO2 release tied to the emplacement of the Siberian Traps, elevated temperatures were maintained for over five million years during the end-Permian biotic crisis. This protracted recovery defies our current understanding of climate regulation via the silicate weathering feedback, and hints at a fundamentally altered carbon and silica cycle. Here, we propose that the development of widespread marine anoxia and Si-rich conditions, linked to the collapse of the biological silica factory, warming, and increased weathering, was capable of trapping Earth's system within a hyperthermal by enhancing ocean-atmosphere CO2 recycling via authigenic clay formation. While solid-Earth degassing may have acted as a trigger, subsequent biotic feedbacks likely exacerbated and prolonged the environmental crisis. This refined view of the carbon-silica cycle highlights that the ecological success of siliceous organisms exerts a potentially significant influence on Earth's climate regime.


Subject(s)
Carbon Dioxide , Ecosystem , Carbon , Carbon Cycle , Silicon Dioxide
2.
Proc Natl Acad Sci U S A ; 119(19): e2115231119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35500118

ABSTRACT

Piecing together the history of carbon (C) perturbation events throughout Earth's history has provided key insights into how the Earth system responds to abrupt warming. Previous studies, however, focused on short-term warming events that were superimposed on longer-term greenhouse climate states. Here, we present an integrated proxy (C and uranium [U] isotopes and paleo CO2) and multicomponent modeling approach to investigate an abrupt C perturbation and global warming event (∼304 Ma) that occurred during a paleo-glacial state. We report pronounced negative C and U isotopic excursions coincident with a doubling of atmospheric CO2 partial pressure and a biodiversity nadir. The isotopic excursions can be linked to an injection of ∼9,000 Gt of organic matter­derived C over ∼300 kyr and to near 20% of areal extent of seafloor anoxia. Earth system modeling indicates that widespread anoxic conditions can be linked to enhanced thermocline stratification and increased nutrient fluxes during this global warming within an icehouse.


Subject(s)
Global Warming , Seawater , Carbon/analysis , Humans , Hypoxia , Oceans and Seas
3.
Nature ; 595(7867): 394-398, 2021 07.
Article in English | MEDLINE | ID: mdl-34262211

ABSTRACT

The evolution of the global carbon and silicon cycles is thought to have contributed to the long-term stability of Earth's climate1-3. Many questions remain, however, regarding the feedback mechanisms at play, and there are limited quantitative constraints on the sources and sinks of these elements in Earth's surface environments4-12. Here we argue that the lithium-isotope record can be used to track the processes controlling the long-term carbon and silicon cycles. By analysing more than 600 shallow-water marine carbonate samples from more than 100 stratigraphic units, we construct a new carbonate-based lithium-isotope record spanning the past 3 billion years. The data suggest an increase in the carbonate lithium-isotope values over time, which we propose was driven by long-term changes in the lithium-isotopic conditions of sea water, rather than by changes in the sedimentary alterations of older samples. Using a mass-balance modelling approach, we propose that the observed trend in lithium-isotope values reflects a transition from Precambrian carbon and silicon cycles to those characteristic of the modern. We speculate that this transition was linked to a gradual shift to a biologically controlled marine silicon cycle and the evolutionary radiation of land plants13,14.


Subject(s)
Carbon Cycle , Carbon , Isotopes , Lithium , Silicon , Aquatic Organisms , Carbon/analysis , Carbon/metabolism , Geologic Sediments/chemistry , Isotopes/analysis , Lithium/analysis , Plants , Seawater/chemistry , Silicon/analysis , Silicon/metabolism
4.
Astrobiology ; 20(5): 628-636, 2020 05.
Article in English | MEDLINE | ID: mdl-32228301

ABSTRACT

Earth's ocean-atmosphere system has undergone a dramatic but protracted increase in oxygen (O2) abundance. This environmental transition ultimately paved the way for the rise of multicellular life and provides a blueprint for how a biosphere can transform a planetary surface. However, estimates of atmospheric oxygen levels for large intervals of Earth's history still vary by orders of magnitude-foremost for Earth's middle history. Historically, estimates of mid-Proterozoic (1.9-0.8 Ga) atmospheric oxygen levels are inferred based on the kinetics of reactions occurring in soils or in the oceans, rather than being directly tracked by atmospheric signatures. Rare oxygen isotope systematics-based on quantifying the rare oxygen isotope 17O in addition to the conventionally determined 16O and 18O-provide a means to track atmospheric isotopic signatures and thus potentially provide more direct estimates of atmospheric oxygen levels through time. Oxygen isotope signatures that deviate strongly from the expected mass-dependent relationship between 16O, 17O, and 18O develop during ozone formation, and these "mass-independent" signals can be transferred to the rock record during oxidation reactions in surface environments that involve atmospheric O2. The magnitude of these signals is dependent upon pO2, pCO2, and the overall extent of biospheric productivity. Here, we use a stochastic approach to invert the mid-Proterozoic Δ17O record for a new estimate of atmospheric pO2, leveraging explicit coupling of pO2 and biospheric productivity in a biogeochemical Earth system model to refine the range of atmospheric pO2 values that is consistent with a given observed Δ17O. Using this approach, we find new evidence that atmospheric oxygen levels were less than ∼1% of the present atmospheric level (PAL) for at least some intervals of the Proterozoic Eon.


Subject(s)
Atmosphere/chemistry , Geologic Sediments/chemistry , Oxygen Isotopes/chemistry , Oxygen/analysis , Calcium Sulfate/chemistry , Chemical Fractionation , Models, Theoretical , Molecular Weight , Oxidation-Reduction , Time Factors
5.
Nature ; 560(7719): 471-475, 2018 08.
Article in English | MEDLINE | ID: mdl-30089907

ABSTRACT

For the first four billion years of Earth's history, climate was marked by apparent stability and warmth despite the Sun having lower luminosity1. Proposed mechanisms for maintaining an elevated partial pressure of carbon dioxide in the atmosphere ([Formula: see text]) centre on a reduction in the weatherability of Earth's crust and therefore in the efficiency of carbon dioxide removal from the atmosphere2. However, the effectiveness of these mechanisms remains debated2,3. Here we use a global carbon cycle model to explore the evolution of processes that govern marine pH, a factor that regulates the partitioning of carbon between the ocean and the atmosphere. We find that elevated rates of 'reverse weathering'-that is, the consumption of alkalinity and generation of acidity during marine authigenic clay formation4-7-enhanced the retention of carbon within the ocean-atmosphere system, leading to an elevated [Formula: see text] baseline. Although this process is dampened by sluggish kinetics today, we propose that more prolific rates of reverse weathering would have persisted under the pervasively silica-rich conditions8,9 that dominated Earth's early oceans. This distinct ocean and coupled carbon-silicon cycle state would have successfully maintained the equable and ice-free environment that characterized most of the Precambrian period. Further, we propose that during this time, the establishment of a strong negative feedback between marine pH and authigenic clay formation would have also enhanced climate stability by mitigating large swings in [Formula: see text]-a critical component of Earth's natural thermostat that would have been dominant for most of Earth's history. We speculate that the late ecological rise of siliceous organisms8 and a resulting decline in silica-rich conditions dampened the reverse weathering buffer, destabilizing Earth's climate system and lowering baseline [Formula: see text].


Subject(s)
Climate , Geologic Sediments/chemistry , Seawater/chemistry , Atmosphere/chemistry , Carbon Cycle , Carbon Dioxide/analysis , Hydrogen-Ion Concentration , Methane/metabolism , Oceans and Seas , Partial Pressure , Silicon Dioxide/analysis , Silicon Dioxide/chemistry
6.
Geobiology ; 16(4): 341-352, 2018 07.
Article in English | MEDLINE | ID: mdl-29869832

ABSTRACT

The biogeochemical cycling of zinc (Zn) is intimately coupled with organic carbon in the ocean. Based on an extensive new sedimentary Zn isotope record across Earth's history, we provide evidence for a fundamental shift in the marine Zn cycle ~800 million years ago. We discuss a wide range of potential drivers for this transition and propose that, within available constraints, a restructuring of marine ecosystems is the most parsimonious explanation for this shift. Using a global isotope mass balance approach, we show that a change in the organic Zn/C ratio is required to account for observed Zn isotope trends through time. Given the higher affinity of eukaryotes for Zn relative to prokaryotes, we suggest that a shift toward a more eukaryote-rich ecosystem could have provided a means of more efficiently sequestering organic-derived Zn. Despite the much earlier appearance of eukaryotes in the microfossil record (~1700 to 1600 million years ago), our data suggest a delayed rise to ecological prominence during the Neoproterozoic, consistent with the currently accepted organic biomarker records.


Subject(s)
Biological Evolution , Eukaryota , Fossils , Geologic Sediments/chemistry , Zinc Isotopes/analysis , Carbon Isotopes/analysis
7.
Emerg Top Life Sci ; 2(2): 149-159, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-32412619

ABSTRACT

The oxygenation of the atmosphere - one of the most fundamental transformations in Earth's history - dramatically altered the chemical composition of the oceans and provides a compelling example of how life can reshape planetary surface environments. Furthermore, it is commonly proposed that surface oxygen levels played a key role in controlling the timing and tempo of the origin and early diversification of animals. Although oxygen levels were likely more dynamic than previously imagined, we make a case here that emerging records provide evidence for low atmospheric oxygen levels for the majority of Earth's history. Specifically, we review records and present a conceptual framework that suggest that background oxygen levels were below 1% of the present atmospheric level during the billon years leading up to the diversification of early animals. Evidence for low background oxygen levels through much of the Proterozoic bolsters the case that environmental conditions were a critical factor in controlling the structure of ecosystems through Earth's history.

SELECTION OF CITATIONS
SEARCH DETAIL
...