Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 66(3): 441-5, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12636298

ABSTRACT

Phosphatidylinositol-specific phospholipase C (PI-PLC) activity is a potential virulence factor and is exhibited only by the Listeria species Listeria monocytogenes and Listeria ivanovii. A chromogenic substrate for the direct detection of PI-PLC activity is available in a new medium (BCM L. monocytogenes plating agar). The use of a chromogenic substrate offers a mechanism with which to directly screen for L. monocytogenes and L. ivanovii other than the esculin used in Oxford (OXF) and Palcam (PAL) agars, which screen for all Listeria species. The specificity levels of BCM plating agar and of BCM confirmation and rhamnose agars were evaluated with 107 Listeria and 10 Bacillus species isolates. In addition, BCM L. monocytogenes plating agar was compared with standard Listeria selective agars (OXF and PAL agars) with regard to the recovery of L. monocytogenes from 2,000 food and environmental samples obtained from eight participating laboratories. A Listeria species was isolated from at least one of the agars in 209 analyses, and L. monocytogenes was isolated in 135 of these analyses. In 27 of the analyses in which L. monocytogenes was isolated, one or more of the selective differential agars used failed to isolate L. monocytogenes, and therefore the results of these analyses were discrepant. Relative to a reference method involving the use of all three agars (OXF, PAL, and BCM agars), the OXF-BCM, PAL-BCM, and OXF-PAL combinations had sensitivities of 99.3, 99.2, and 90.2%, respectively. In statistical analyses of the different combinations of agars, the OXF-BCM and BCM-PAL combinations were found to be superior to the OXF-PAL combination for the detection of L. monocytogenes.


Subject(s)
Agar , Listeria monocytogenes/isolation & purification , Type C Phospholipases/analysis , Chromogenic Compounds , Colony Count, Microbial , Food Microbiology , Indicators and Reagents , Listeria monocytogenes/enzymology , Phosphatidylinositol Diacylglycerol-Lyase , Phosphoinositide Phospholipase C , Sensitivity and Specificity
2.
J Food Prot ; 65(2): 393-402, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11858194

ABSTRACT

Outbreaks of gastroenteritis that are suspected to be of viral origin are on the rise. Thus, there is a need for regulatory agencies entrusted with food safety to develop adequate techniques for the detection of viruses in foods. We have established a general procedure for the detection of hepatitis A virus (HAV) in shellfish that, with minor modifications, is also applicable to fresh produce such as cilantro. Total RNA was isolated from shellfish or cilantro, followed by isolation of poly(A)-containing RNA. Because HAV genomic RNA contains a poly(A) tail, the isolation of poly(A)-containing RNA also enriches HAV genomic RNA. Reverse transcription was used to convert the RNA to cDNA, and then amplification was carried out by polymerase chain reaction (PCR). Reamplification with internal primers was used to improve the quality and the quantity of amplified DNA, allowing for post-PCR analysis such as sequence identification of the viral strain. With this procedure, multiple samples could be analyzed in four working days by a single trained individual. The nominal sensitivity of detection of the procedure was 0.15 TCID50 (50% tissue culture infective dose) per 0.62 g of tissue with a test virus. The direct RNA isolation protocol avoided pitfalls associated with whole-virus purification procedures by replacing virus precipitation steps involving polyethylene glycol and Procipitate with phenol extraction. The method is straightforward and reliable. We successfully used this procedure to detect naturally occurring HAV in clams involved in a gastroenteritis outbreak, as well as in cilantro artificially contaminated with a test virus.


Subject(s)
Coriandrum/virology , Food Contamination/analysis , Gastroenteritis/epidemiology , Hepatitis A virus/isolation & purification , Seafood/virology , Animals , Disease Outbreaks , Gastroenteritis/etiology , Gene Amplification , Hepatitis A virus/genetics , Humans , Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...