Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(17): 25736-25750, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488914

ABSTRACT

A field experiment following good agricultural practices was laid out to study the dissipation of spirotetramat (90 g a.i. ha-1 and 180 g a.i. ha-1) and chlorpyrifos (400 g a.i. ha-1 and 800 g a.i. ha-1) on cabbage heads and soil. Samples were processed using quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for residue estimation of spirotetramat and chlorpyrifos, which were further detected using HPLC-PDA and GC-FPD respectively. The residues of spirotetramat on cabbage heads reached below detection limit (BDL) (< 0.05 mg kg-1) on 7th and 10th day and for chlorpyrifos, BDL (< 0.01 mg kg-1) was achieved on 10th and 15th day for X and 2X dose, respectively. On 20th day after second spray, residues in soil were found to be BDL for both the pesticides. Half-life of spirotetramat and chlorpyrifos was found to be 3 and 2 days, respectively while a safe pre-harvest interval (PHI) of 9 days for spirotetramat and 10 days for chlorpyrifos is suggested on cabbage. The dietary risk assessment studies for various age groups of Indian population, ascertained safety of treated cabbage heads for consumption, as current study revealed that hazard quotient (HQ) < 1 and theoretical maximum dietary intake (TMDI) < maximum permissible intake (MPI) for both the pesticides at respective PHI.


Subject(s)
Aza Compounds , Brassica , Chlorpyrifos , Pesticide Residues , Pesticides , Soil Pollutants , Spiro Compounds , Soil/chemistry , Brassica/chemistry , Pesticide Residues/analysis , Soil Pollutants/analysis , Pesticides/analysis , Risk Assessment , Half-Life
2.
Environ Monit Assess ; 196(1): 58, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38110624

ABSTRACT

Mancozeb residue estimation was done using second derivative ultraviolet spectroscopy by Shimadzu ultraviolet-visible spectrophotometer, and chlorpyrifos was estimated by QuEChERS technique using GC-FPD. The persistence for chlorpyrifos was carried out at two locations, and for mancozeb, persistence studies were carried out at four locations. Initial deposits of mancozeb on apple fruits ranged from 1.33 to 1.63 mg/kg at the recommended dose and from 2.55 to 3.26 mg/kg at double the recommended dose at all four locations. Chlorpyrifos residues in apple fruits had an initial deposit of 0.94-0.99 mg/kg at recommended dose and 1.75-1.92 mg/kg at double the recommended dose. Mancozeb residues in apple fruit were below the detection limit (BDL) after 20 days at recommended dose and after 25 days at double the recommended dose at two locations, while mancozeb residue at the other two locations and the residues of chlorpyrifos at all locations reached BDL after 15 and 20 days at recommended and double the recommended doses, respectively. Half-life of mancozeb varied from 3.07 to 4.02 days at recommended dose and from 3.30 to 4.32 days at double the recommended dose, whereas chlorpyrifos residues dissipated to half their initial concentration on 2.33-2.35 days at recommended dose and 2.89-2.90 days at double the recommended dose. The soil samples showed no presence of residues of chlorpyrifos and mancozeb at harvest. The risk assessment revealed that hazard quotient for the intake of mancozeb was in the range of 0.06-0.13% and 0.20-0.44% for rural and urban population, while for the intake of chlorpyrifos, hazard quotient was in the range of 0.10-0.12% for rural population and 0.33-0.38% for urban population, and theoretical maximum dietary intake (9.67 × 10-5 mg/person and 3.18 × 10-4 mg/person for rural population and urban population in case of mancozeb and 3.22 × 10-5 mg/person and 1.06 × 10-4 mg/person for rural population and urban population in case of chlorpyrifos) was also found to be less than maximum permissible intake (1.38 mg/kg for mancozeb and 0.60 mg/kg for chlorpyrifos). The results of risk assessment thereby indicated that apple consumption does not pose a risk to human health.


Subject(s)
Chlorpyrifos , Malus , Pesticide Residues , Soil Pollutants , Humans , Chlorpyrifos/analysis , Fruit/chemistry , Soil/chemistry , Pesticide Residues/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods , Risk Assessment , Half-Life
SELECTION OF CITATIONS
SEARCH DETAIL
...