Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37998129

ABSTRACT

A highly sensitive electrochemical biosensor for ethanol based on a screen-printed electrode modified with gold nanoparticles-electrochemically reduced graphene oxide-poly (allylamine hydrochloride) nanocomposite (AuNPs-ERGO-PAH) is reported in this work. Ethanol was oxidized in the presence of the oxidized form of the nicotinamide adenine dinucleotide (NAD+) in a reaction catalyzed by alcohol dehydrogenase (ADH) immobilized in sol-gel. The AuNPs-ERGO-PAH nanocomposite was used as a transducer for the electrocatalytic oxidation of the reduced form the nicotinamide adenine dinucleotide (NADH) produced in the enzyme reaction. Under the optimal conditions, the ethanol biosensor exhibits a wide dynamic range from 0.05 to 5 mM with a low detection limit of 10 µM (S/N = 3) and a high sensitivity of 44.6 ± 0.07 µA/mM·cm2 for the linear range between 0.05 and 0.2 mM. The biosensor response was stable for up to 6 weeks. Furthermore, the developed biosensor has been used to detect ethanol in alcoholic beverages with good results, suggesting its potential application in various fields, including fermentation processes and food quality control.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Nanocomposites , Ethanol , Gold , NAD , Biosensing Techniques/methods , Electrodes , Electrochemical Techniques
2.
Anal Chem ; 95(44): 16185-16193, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37882766

ABSTRACT

In this study, we present the development of an electrochemical sensor designed for ultrasensitive detection of endogenous H2O2. This sensor relies on signal amplification achieved through nanozyme activity exhibited by methylene blue (MB) grafted onto a peptide support. The sensor exhibited excellent selectivity and sensitivity, with a limit of detection of 18 nM and a linear detection range of 20-200 nM. Thus, we have validated the concept of the MB-peptide system, serving as both an electroactive label and a catalyst for H2O2 decomposition under electrochemical conditions. The implemented signal amplification system enables the rapid detection of H2O2, with an overall assay time of 1-2 min, a significant improvement compared to amperometric detection using surface-immobilized enzymes.


Subject(s)
Biosensing Techniques , Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Catalase , Methylene Blue/chemistry , Electrochemical Techniques , Limit of Detection , Peptides
3.
Sensors (Basel) ; 21(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34640829

ABSTRACT

Herein, we report on a new type of ethanol biosensor based on a screen-printed electrode modified with poly(allylamine hydrochloride). The alcohol dehydrogenase was immobilized on the surface of the sensor using the sol-gel matrix. Working parameters such as applied potential, pH, NAD+ concentration, storage conditions were optimized. A response range between 0.05 and 2 mM was found with a sensitivity of 13.45 ± 0.67 µA/mM·cm2 and a detection limit of 20 µM. The developed biosensor was used to detect ethanol in commercial beverages with good accuracy.


Subject(s)
Biosensing Techniques , Ethanol , Beverages , Electrodes , Ethanol/analysis , Polyamines
SELECTION OF CITATIONS
SEARCH DETAIL
...