Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Biosens Bioelectron ; 95: 174-180, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28453962

ABSTRACT

The proof of concept of utilizing a microfluidic dielectrophoresis (DEP) chip was conducted to rapidly detect a dengue virus (DENV) in vitro based on the fluorescence immunosensing. The mechanism of detection was that the DEP force was employed to capture the modified beads (mouse anti-flavivirus monoclonal antibody-coated beads) in the microfluidic chip and the DENV modified with fluorescence label, as the detection target, can be then captured on the modified beads by immunoreaction. The fluorescent signal was then obtained through fluorescence microscopy, and then quantified by ImageJ freeware. The platform can accelerate an immuno-reaction time, in which the on-chip detection time was 5min, and demonstrating an ability for DENV detection as low as 104 PFU/mL. Furthermore, the required volume of DENV samples dramatically reduced, from the commonly used ~50µL to ~15µL, and the chip was reusable (>50x). Overall, this platform provides a rapid detection (5min) of the DENV with a low sample volume, compared to conventional methods. This proof of concept with regard to a microfluidic dielectrophoresis chip thus shows the potential of immunofluorescence based-assay applications to meet diagnostic needs.


Subject(s)
Biosensing Techniques , Dengue Virus/isolation & purification , Dengue/diagnosis , Microfluidics , Biological Assay , Dengue/virology , Dengue Virus/genetics , Dengue Virus/pathogenicity , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...