Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
JAMA Netw Open ; 7(5): e2412040, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38780942

ABSTRACT

Importance: Prenatal exposure to ubiquitous endocrine-disrupting chemicals (EDCs) may increase the risk of metabolic syndrome (MetS) in children, but few studies have studied chemical mixtures or explored underlying protein and metabolic signatures. Objective: To investigate associations of prenatal exposure to EDC mixtures with MetS risk score in children and identify associated proteins and metabolites. Design, Setting, and Participants: This population-based, birth cohort study used data collected between April 1, 2003, and February 26, 2016, from the Human Early Life Exposome cohort based in France, Greece, Lithuania, Norway, Spain, and the UK. Eligible participants included mother-child pairs with measured prenatal EDC exposures and complete data on childhood MetS risk factors, proteins, and metabolites. Data were analyzed between October 2022 and July 2023. Exposures: Nine metals, 3 organochlorine pesticides, 5 polychlorinated biphenyls, 2 polybrominated diphenyl ethers (PBDEs), 5 perfluoroalkyl substances (PFAS), 10 phthalate metabolites, 3 phenols, 4 parabens, and 4 organophosphate pesticide metabolites measured in urine and blood samples collected during pregnancy. Main Outcomes and Measures: At 6 to 11 years of age, a composite MetS risk score was constructed using z scores of waist circumference, systolic and diastolic blood pressures, triglycerides, high-density lipoprotein cholesterol, and insulin levels. Childhood levels of 44 urinary metabolites, 177 serum metabolites, and 35 plasma proteins were quantified using targeted methods. Associations were assessed using bayesian weighted quantile sum regressions applied to mixtures for each chemical group. Results: The study included 1134 mothers (mean [SD] age at birth, 30.7 [4.9] years) and their children (mean [SD] age, 7.8 [1.5] years; 617 male children [54.4%] and 517 female children [45.6%]; mean [SD] MetS risk score, -0.1 [2.3]). MetS score increased per 1-quartile increase of the mixture for metals (ß = 0.44; 95% credible interval [CrI], 0.30 to 0.59), organochlorine pesticides (ß = 0.22; 95% CrI, 0.15 to 0.29), PBDEs (ß = 0.17; 95% CrI, 0.06 to 0.27), and PFAS (ß = 0.19; 95% CrI, 0.14 to 0.24). High-molecular weight phthalate mixtures (ß = -0.07; 95% CrI, -0.10 to -0.04) and low-molecular weight phthalate mixtures (ß = -0.13; 95% CrI, -0.18 to -0.08) were associated with a decreased MetS score. Most EDC mixtures were associated with elevated proinflammatory proteins, amino acids, and altered glycerophospholipids, which in turn were associated with increased MetS score. Conclusions and Relevance: This cohort study suggests that prenatal exposure to EDC mixtures may be associated with adverse metabolic health in children. Given the pervasive nature of EDCs and the increase in MetS, these findings hold substantial public health implications.


Subject(s)
Endocrine Disruptors , Metabolic Syndrome , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/epidemiology , Metabolic Syndrome/epidemiology , Metabolic Syndrome/chemically induced , Child , Male , Endocrine Disruptors/adverse effects , Endocrine Disruptors/urine , Risk Factors , Environmental Pollutants/urine , Environmental Pollutants/blood , Environmental Pollutants/adverse effects , Adult , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Cohort Studies , Birth Cohort
2.
Sci Total Environ ; 929: 172426, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38631641

ABSTRACT

BACKGROUND: Exposure to phthalate/DINCH metabolites can induce human reproductive toxicity, however, their endocrine-disrupting mechanisms are not fully elucidated. OBJECTIVE: To investigate the association between concentrations of phthalate/DINCH metabolites, serum kisspeptin, and reproductive hormones among European teenagers from three of the HBM4EU Aligned Studies. METHODS: In 733 Belgian (FLEHS IV study), Slovak (PCB cohort follow-up), and Spanish (BEA study) teenagers, ten phthalate and two DINCH metabolites were measured in urine by high-performance liquid chromatography-tandem mass spectrometry. Serum kisspeptin (kiss54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were measured by immunosorbent assays. Free Androgen Index (FAI) was calculated as a proxy of free testosterone. Adjusted sex-stratified linear regression models for individual studies, mixed effect models (LME) accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the phthalate/DINCH mixture were performed. RESULTS: The LME suggested that each IQR increase in ln-transformed levels of several phthalates was associated with lower kisspeptin [MnBP: %change (95%CI): -2.8 (-4.2;-0.4); MEHP: -1.4 (-3.4,0.2)] and higher FSH [∑DINP: 11.8 (-0.6;25.1)] levels in females from pooled studies. G-computation showed that the phthalates/DINCH mixture was associated with lower kisspeptin [-4.28 (-8.07;-0.34)] and higher FSH [22.13 (0.5;48.4)] also in females; BKMR showed similar although non-significant pattern. In males, higher phthalates metabolites [MEHP: -12.22 (-21.09;-1.18); oxo-MEHP: -12.73 (-22.34;-1.93)] were associated with lower TT and FAI, although higher DINCH [OH-MINCH: 16.31 (6.23;27.35), cx-MINCH: 16.80 (7.03;27.46), ∑DINCH: 17.37 (7.26;29.74)] were associated with higher TT levels. No mixture associations were found in males. CONCLUSION: We observed sex-specific associations between urinary concentrations of phthalate/DINCH metabolites and the panel of selected effect biomarkers (kisspeptin and reproductive hormones). This suggests that exposure to phthalates would be associated with changes in kisspeptin levels, which would affect the HPG axis and thus influence reproductive health. However, further research is needed, particularly for phthalate replacements such as DINCH.


Subject(s)
Environmental Pollutants , Kisspeptins , Phthalic Acids , Phthalic Acids/urine , Humans , Adolescent , Female , Cross-Sectional Studies , Male , Environmental Pollutants/urine , Environmental Pollutants/blood , Follicle Stimulating Hormone/blood , Testosterone/blood , Testosterone/metabolism , Environmental Exposure/statistics & numerical data , Sex Hormone-Binding Globulin/metabolism , Estradiol/blood , Endocrine Disruptors/urine
3.
Environ Int ; 181: 108271, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37879205

ABSTRACT

BACKGROUND: The etiology of autism spectrum disorder (ASD) is multifactorial, involving genetic and environmental contributors such as endocrine-disrupting chemicals (EDCs). OBJECTIVE: To evaluate the association between perinatal exposure to 27 potential EDCs and ASD among Norwegian children, and to further examine the neurodevelopmental toxicity of associated chemicals using zebrafish embryos and larvae. METHOD: 1,199 mothers enrolled in the prospective birth-cohort (HUMIS, 2002-2009) study. Breastmilk levels of 27 chemicals were measured: polychlorinated biphenyls, organochlorine pesticides, polybrominated diphenyl ethers, and perfluoroalkyl substances as a proxy for perinatal exposure. We employed multivariable logistic regression to determine association, utilized elastic net logistic regression as variable selection method, and conducted an in vivo study with zebrafish larvae to confirm the neurodevelopmental effect. RESULTS: A total of 20 children had specialist confirmed diagnosis of autism among 1,199 mother-child pairs in this study. ß-Hexachlorocyclohexane (ß-HCH) was the only chemical associated with ASD, after adjusting for 26 other chemicals. Mothers with the highest levels of ß-HCH in their milk had a significant increased risk of having a child with ASD (OR = 1.82, 95 % CI: 1.20, 2.77 for an interquartile range increase in ln-transformed ß-HCH concentration). The median concentration of ß-HCH in breast milk was 4.37 ng/g lipid (interquartile range: 2.92-6.47), and the estimated daily intake (EDI) for Norwegian children through breastfeeding was 0.03 µg/kg of body weight. The neurodevelopmental and social behavioral effects of ß-HCH were established in zebrafish embryos and larvae across various concentrations, with further analysis suggesting that perturbation of dopaminergic neuron development may underlie the neurotoxicity associated with ß-HCH. CONCLUSIONS: Prenatal exposure to ß-HCH was associated with an increased risk of specialist-confirmed diagnoses of ASD among Norwegian children, and the EDI surpasses the established threshold. Zebrafish experiments confirm ß-HCH neurotoxicity, suggesting dopaminergic neuron disruption as a potential underlying mechanism.


Subject(s)
Autism Spectrum Disorder , Endocrine Disruptors , Environmental Pollutants , Pregnancy , Female , Animals , Humans , Zebrafish , Endocrine Disruptors/toxicity , Prospective Studies , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/epidemiology , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Birth Cohort , Norway/epidemiology
4.
Toxics ; 11(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37624216

ABSTRACT

Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). Evidence for the association between PFAS and phthalate exposure and menarche onset, however, is inconsistent. We studied the association between PFAS and phthalate/DINCH exposure and age at menarche using data of 514 teenagers (12 to 18 years) from four aligned studies of the Human Biomonitoring for Europe initiative (HBM4EU): Riksmaten Adolescents 2016-2017 (Sweden), PCB cohort (follow-up; Slovakia), GerES V-sub (Germany), and FLEHS IV (Belgium). PFAS concentrations were measured in blood, and phthalate/DINCH concentrations in urine. We assessed the role of each individual pollutant within the context of the others, by using different multi-pollutant approaches, adjusting for age, age- and sex-standardized body mass index z-score and household educational level. Exposure to di(2-ethylhexyl) phthalate (DEHP), especially mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), was associated with an earlier age at menarche, with estimates per interquartile fold change in 5OH-MEHP ranging from -0.34 to -0.12 years in the different models. Findings from this study indicated associations between age at menarche and some specific EDCs at concentrations detected in the general European population, but due to the study design (menarche onset preceded the chemical measurements), caution is needed in the interpretation of causality.

5.
Environ Pollut ; 335: 122214, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37482334

ABSTRACT

Exposure to Perfluoroalkyl acids (PFAS) can impair human reproductive function, e.g., by delaying or advancing puberty, although their mechanisms of action are not fully understood. We therefore set out to evaluate the relationship between serum PFAS levels, both individually and as a mixture, on the Hypothalamic-Pituitary-Gonadal (HPG) axis by analyzing serum levels of reproductive hormones and also kisspeptin in European teenagers participating in three of the HBM4EU Aligned Studies. For this purpose, PFAS compounds were measured in 733 teenagers from Belgium (FLEHS IV study), Slovakia (PCB cohort follow-up), and Spain (BEA study) by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS) in laboratories under the HBM4EU quality assurance quality control (QA/QC) program. In the same serum samples, kisspeptin 54 (kiss-54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were also measured using immunosorbent assays. Sex-stratified single pollutant linear regression models for separate studies, mixed single pollutant models accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the mixture of the three most available (PFNA, PFOA, and PFOS) were fit. PFAS associations with reproductive markers differed according to sex. Each natural log-unit increase of PFOA, PFNA, and PFOS were associated with higher TT [18.41 (6.18; 32.31), 15.60 (7.25; 24.61), 14.68 (6.18; 24.61), respectively] in girls, in the pooled analysis (all studies together). In males, G-computation showed that PFAS mixture was associated with lower FSH levels [-10.51 (-18.81;-1.36)]. The BKMR showed the same patterns observed in G-computation, including a significant increase on male Kiss-54 and SHBG levels. Overall, effect biomarkers may enhance the current epidemiological knowledge regarding the adverse effect of PFAS in human HPG axis, although further research is warranted.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Female , Humans , Male , Adolescent , Kisspeptins , Bayes Theorem , Gonadal Steroid Hormones , Testosterone , Follicle Stimulating Hormone
6.
Environ Pollut ; 316(Pt 1): 120566, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36334774

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are widespread pollutants that may impact youth adiposity patterns. We investigated cross-sectional associations between PFAS and body mass index (BMI) in teenagers/adolescents across nine European countries within the Human Biomonitoring for Europe (HBM4EU) initiative. We used data from 1957 teenagers (12-18 yrs) that were part of the HBM4EU aligned studies, consisting of nine HBM studies (NEBII, Norway; Riksmaten Adolescents 2016-17, Sweden; PCB cohort (follow-up), Slovakia; SLO CRP, Slovenia; CROME, Greece; BEA, Spain; ESTEBAN, France; FLEHS IV, Belgium; GerES V-sub, Germany). Twelve PFAS were measured in blood, whilst weight and height were measured by field nurse/physician or self-reported in questionnaires. We assessed associations between PFAS and age- and sex-adjusted BMI z-scores using linear and logistic regression adjusted for potential confounders. Random-effects meta-analysis and mixed effects models were used to pool studies. We assessed mixture effects using molar sums of exposure biomarkers with toxicological/structural similarities and quantile g-computation. In all studies, the highest concentrations of PFAS were PFOS (medians ranging from 1.34 to 2.79 µg/L). There was a tendency for negative associations with BMI z-scores for all PFAS (except for PFHxS and PFHpS), which was borderline significant for the molar sum of [PFOA and PFNA] and significant for single PFOA [ß-coefficient (95% CI) per interquartile range fold change = -0.06 (-0.17, 0.00) and -0.08 (-0.15, -0.01), respectively]. Mixture assessment indicated similar negative associations of the total mixture of [PFOA, PFNA, PFHxS and PFOS] with BMI z-score, but not all compounds showed associations in the same direction: whilst [PFOA, PFNA and PFOS] were negatively associated, [PFHxS] associated positively with BMI z-score. Our results indicated a tendency for associations of relatively low PFAS concentrations with lower BMI in European teenagers. More prospective research is needed to investigate this potential relationship and its implications for health later in life.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Adolescent , Humans , Fluorocarbons/analysis , Body Mass Index , Cross-Sectional Studies , Prospective Studies , Environmental Pollutants/analysis
7.
Nutrients ; 14(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36145232

ABSTRACT

Triglyceride-bound fatty acids constitute the majority of lipids in human milk and may affect infant growth. We describe the composition of fatty acids in human milk, identify predictors, and investigate associations between fatty acids and infant growth using data from the Norwegian Human Milk Study birth cohort. In a subset of participants (n = 789, 30% of cohort), oversampled for overweight and obesity, we analyzed milk concentrations of detectable fatty acids. We modelled percent composition of fatty acids in relation to maternal body mass index, pregnancy weight gain, parity, smoking, delivery mode, gestational age, fish intake, and cod liver oil intake. We assessed the relation between fatty acids and infant growth from 0 to 6 months. Of the factors tested, excess pregnancy weight gain was positively associated with monounsaturated fatty acids and inversely associated with stearic acid. Multiparity was negatively associated with monounsaturated fatty acids and n-3 fatty acids while positively associated with stearic acid. Gestational age was inversely associated with myristic acid. Medium-chain saturated fatty acids were inversely associated with infant growth, and mono-unsaturated fatty acids, particularly oleic acid, were associated with an increased odds of rapid growth. Notably, excessive maternal weight gain was associated with cis-vaccenic acid, which was further associated with a threefold increased risk of rapid infant growth (OR = 2.9, 95% CI 1.2-6.6), suggesting that monounsaturated fatty acids in milk may play a role in the intergenerational transmission of obesity.


Subject(s)
Fatty Acids, Omega-3 , Gestational Weight Gain , Animals , Birth Cohort , Cod Liver Oil , Fatty Acids , Fatty Acids, Monounsaturated , Female , Humans , Infant , Milk, Human , Myristic Acids , Obesity , Oleic Acids , Pregnancy , Stearic Acids , Triglycerides , Weight Gain
8.
Environ Res ; 214(Pt 1): 113861, 2022 11.
Article in English | MEDLINE | ID: mdl-35820657

ABSTRACT

BACKGROUND: The etiology of cryptorchidism remains poorly understood. Endocrine disrupting chemicals can impact estrogen signaling by interacting with aryl hydrocarbon receptor (AhR) activity. OBJECTIVE: To evaluate whether AhR activity in breast milk samples is associated with cryptorchidism. METHOD: We conducted a case-control study based on 199 mother-child pairs (n = 91 cases/108 controls) selected from the Norwegian Human Milk Study (2002-2009). We defined cases for cryptorchidism based on maternal reports at 1-, 6-, 12-, and 24- months after birth. Chemically- and biologically stable AhR activity (pg 2,3,7,8-TCDD equivalent (TEQ)/g lipid) was determined by DR- CALUX® assay in the mothers' milk collected at a median of 33 (10th-90th percentile: 18-57) days after delivery. We used multivariate logistic regression to compare AhR activity levels between cases and controls, and linear regression separately, to establish the relationship with the presence of 27 potential EDCs measured in breast milk and AhR activity. RESULTS: The average estimated daily intake (EDI) of dioxin and (dioxin-like (dl)-compounds via breast milk is 33.7 ± 17.9 pg TEQ/kg bodyweight per day among Norwegian children. There were no significant differences in AhR activation in breast milk samples between cases with cryptorchidism and controls. Among the 27 chemicals measured in breast milk, AhR activity was (borderline) significantly associated with all dl-PCBs, three non-dioxin-like (ndl)-PCBs (PCB-74, PCB-180, PCB-194) and two organochlorine pesticides (OCPs; HCB, ß-HCH). No associations between AhR activity and brominated flame retardants (PBDEs) or poly- and perfluoroalkyl substances (PFASs). CONCLUSION: No association between AhR activity and cryptorchidism was found among Norwegian boys. The average EDI of dioxin and dl-compounds in exclusively breastfed Norwegian infants remains above the safety threshold and, therefore requires further reduction measures. Consistent with a possible role in the observed AhR activity, all dl-PCBs were associated with AhR activity whereas the association was null for either PBDEs or PFASs.


Subject(s)
Cryptorchidism , Milk, Human , Polychlorinated Biphenyls , Receptors, Aryl Hydrocarbon , Case-Control Studies , Cryptorchidism/etiology , Dioxins/toxicity , Female , Fluorocarbons/toxicity , Halogenated Diphenyl Ethers , Humans , Infant , Male , Milk, Human/metabolism , Polychlorinated Biphenyls/toxicity , Polychlorinated Dibenzodioxins , Prospective Studies , Receptors, Aryl Hydrocarbon/metabolism
9.
Sci Total Environ ; 803: 149746, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34525773

ABSTRACT

The prevalence of cryptorchidism has increased over the past decades, yet its origins remain poorly understood. Testis descent is dependent on androgens and likely affected by endocrine disrupting compounds (EDCs), targeting the androgen receptor (AR). We investigated the association between anti-androgenic activity, not derived from natural hormones, in maternal breast milk and impaired testis descent among boys. We performed a case-control study based on 199 breast milk samples from 94 mothers of cryptorchid boys and 105 random non-cryptorchid boys participating in the Norwegian HUMIS (Human Milk Study) cohort. For each participant, apolar, and polar fractions were extracted, and combined to reconstitute a mixture. Anti-androgenic activity was measured in all three fractions using the human cell-based in vitro anti-AR CALUX® assay and expressed in µg of flutamide equivalent, a well-known antiandrogen. Results from fraction analyses were compared among boys with cryptorchidism and controls using multiple logistic regression, controlling for appropriate confounders identified using a directed acyclic graph. Children's daily exposure to anti-androgenic EDCs through breastfeeding was estimated to 78 µg flutamide eq./kg of body weigh/day. The activity was higher in the polar fraction (1.48 ± 1.37 µg flutamide eq./g of milk) mainly representing non-persistent chemicals, in contrast to other fractions. However, the activity in the polar extracts was decreased when in mixtures with the apolar fraction, indicating synergistic interactions. No significant difference in the activity was observed according to cryptorchid status for polar, apolar or mixed breast milk fractions. The study showed anti-androgenic activity in nearly all human milk samples, and at levels higher than the advisory threshold. However, no significant association was observed between cryptorchidism and antiandrogenic activity measured in either polar, apolar, or mixture fractions derived from breast milk.


Subject(s)
Cryptorchidism , Milk, Human , Androgen Antagonists , Androgens , Case-Control Studies , Cryptorchidism/epidemiology , Female , Humans , Male
10.
Environ Int ; 157: 106815, 2021 12.
Article in English | MEDLINE | ID: mdl-34388676

ABSTRACT

BACKGROUND: Exposure to endocrine-disrupting chemicals (EDCs) during the critical period of testicular descent may increase the risk of cryptorchidism and male fertility. OBJECTIVE: To investigate 27 potential EDCs measured in breast milk as a proxy for perinatal exposure and the risk of cryptorchidism in a prospective cohort. METHOD: The Norwegian Human Milk Study (2002-2009) enrolled 2606 mother-infant pairs, of which 1326 were mother-son pairs. In a case-cohort design, we studied 641 male infants who had 27 EDCs already quantified in milk samples: 5 organochlorine pesticides, 14 polychlorinated biphenyls (PCBs), 6 brominated flame retardants, and 2 poly- and perfluoroalkyl substances. We defined cases of congenital, recurrent, persistent and ever-reported cryptorchidism based on questionnaires mothers completed when children were 1, 6, 12 and 24 months old. Variable selection via elastic net logistic regression identified the best cryptorchidism predictors while multivariable logistic regression models determined their effect estimates. RESULTS: The prevalence of reported congenital cryptorchidism was 6.1%, with half spontaneously descending within six months of birth, after which prevalence stabilized between 2.2 and 2.4%. The ever-reported prevalence of cryptorchidism at 1, 6, 12, or 24 months was 12.2%. Elastic net models identified PCB-74 (OR = 1.31, 95% CI: 1.001-1.703), PCB-114 (OR = 1.36, 95% CI: 1.05-1.77), PCB-194 (OR = 1.28, 95% CI: 1.03-1.53) and ß-HCH (OR = 1.26, 95% CI: 1.03-1.53 (per interquartile range increase in concentration of EDCs) as best predictors of congenital cryptorchidism. No EDCs were selected for either recurrent or persistent cryptorchidism, and only PCB-194 was selected by elastic net for ever-reported cryptorchidism (OR = 1.23, 95% CI: 1.01-1.51), in contrast to unpenalized multivariable logistic regression, where most of the individual congeners of PCBs showed significant associations. CONCLUSION: In the largest multi-pollutant analysis to date considering potential confounding from co-exposure to other chemicals, perinatal exposure to PCB-74, PCB-114, PCB-194 and ß-HCH were associated with increased odds of congenital cryptorchidism. Many PCBs may falsely be associated with cryptorchidism when assessed individually, due to confounding by highly correlated chemicals. Experimental studies are warranted to confirm our findings.


Subject(s)
Cryptorchidism , Environmental Pollutants , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Child , Child, Preschool , Cohort Studies , Cryptorchidism/chemically induced , Cryptorchidism/epidemiology , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Female , Humans , Hydrocarbons, Chlorinated/analysis , Infant , Male , Milk, Human/chemistry , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/toxicity , Pregnancy , Prospective Studies
11.
Int J Epidemiol ; 50(4): 1134-1146, 2021 08 30.
Article in English | MEDLINE | ID: mdl-33713119

ABSTRACT

BACKGROUND: Maternal seafood intake during pregnancy and prenatal mercury exposure may influence children's growth trajectories. METHODS: This study, based on the Norwegian Mother, Father and Child Cohort Study (MoBa), includes 51 952 mother-child pairs recruited in pregnancy during 2002-08 and a subsample (n = 2277) with maternal mercury concentrations in whole blood. Individual growth trajectories were computed by modelling based on child's reported weight and length/height from 1 month to 8 years. We used linear mixed-effects regression analysis and also conducted discordant-sibling analysis. RESULTS: Maternal lean fish was the main contributor to total seafood intake in pregnancy and was positively but weakly associated with child body mass index (BMI) growth trajectory. Higher prenatal mercury exposure (top decile) was associated with a reduction in child's weight growth trajectory, with the estimates ranging from -130 g [95% Confidence Intervals (CI) = -247, -12 g] at 18 months to -608 g (95% CI = -1.102, -113 g) at 8 years. Maternal fatty fish consumption was positively associated with child weight and BMI growth trajectory, but only in the higher mercury-exposed children (P-interaction = 0.045). Other seafood consumption during pregnancy was negatively associated with child weight growth compared with no intake, and this association was stronger for higher mercury-exposed children (P-interaction = 0.004). No association was observed between discordant maternal seafood intake and child growth in the sibling analysis. CONCLUSIONS: Within a population with moderate seafood consumption and low mercury exposure, we found that maternal seafood consumption in pregnancy was associated with child growth trajectories, and the direction of the association varied by seafood type and level of prenatal mercury exposure. Prenatal mercury exposure was negatively associated with child growth. Our findings on maternal seafood intake are likely non-causal.


Subject(s)
Mercury , Prenatal Exposure Delayed Effects , Animals , Body Mass Index , Cohort Studies , Female , Humans , Maternal Exposure/adverse effects , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , Seafood
12.
Environ Health Perspect ; 128(5): 57002, 2020 05.
Article in English | MEDLINE | ID: mdl-32378965

ABSTRACT

INTRODUCTION: To date, the evidence for an association between perfluoroalkyl substances (PFAS) exposure and attention deficit and hyperactivity disorder (ADHD) is inconclusive. OBJECTIVE: We investigated the association between early life exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), and ADHD in a collaborative study including nine European population-based studies, encompassing 4,826 mother-child pairs. METHODS: Concentrations of PFOS and PFOA were measured in maternal serum/plasma during pregnancy, or in breast milk, with different timing of sample collection in each cohort. We used a validated pharmacokinetic model of pregnancy and lactation to estimate concentrations of PFOS and PFOA in children at birth and at 3, 6, 12, and 24 months of age. We classified ADHD using recommended cutoff points for each instrument used to derive symptoms scores. We used multiple imputation for missing covariates, logistic regression to model the association between PFAS exposure and ADHD in each study, and combined all adjusted study-specific effect estimates using random-effects meta-analysis. RESULTS: A total of 399 children were classified as having ADHD, with a prevalence ranging from 2.3% to 7.3% in the studies. Early life exposure to PFOS or PFOA was not associated with ADHD during childhood [odds ratios (ORs) ranging from 0.96 (95% CI: 0.87, 1.06) to 1.02 (95% CI: 0.93, 1.11)]. Results from stratified models suggest potential differential effects of PFAS related to child sex and maternal education. CONCLUSION: We did not identify an increased prevalence of ADHD in association with early life exposure to PFOS and PFOA. However, stratified analyses suggest that there may be an increased prevalence of ADHD in association with PFAS exposure in girls, in children from nulliparous women, and in children from low-educated mothers, all of which warrant further exploration. https://doi.org/10.1289/EHP5444.


Subject(s)
Attention Deficit Disorder with Hyperactivity/epidemiology , Environmental Exposure/statistics & numerical data , Environmental Pollutants/metabolism , Fluorocarbons/metabolism , Milk, Human/metabolism , Prenatal Exposure Delayed Effects/epidemiology , Alkanesulfonic Acids , Breast Feeding , Caprylates , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Mothers , Population , Pregnancy
13.
Sci Total Environ ; 677: 466-473, 2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31063889

ABSTRACT

Mercury (Hg), cadmium (Cd), and lead (Pb) are of great concern for food safety and infants are especially sensitive to exposure to the maternal body burden. We quantified these elements in breast milk from Norwegian mothers and determined their association with dietary habits, maternal amalgam fillings, and smoking. Breast milk (n = 300) from the Norwegian Human Milk Study (HUMIS) was analyzed using triple quadrupole inductively coupled plasma mass spectrometry, after an acidic decomposition using microwave technique. We used multiple linear regression to examine predictors of Hg and Cd in breast milk, and logistic regression to test predictors of Pb above the quantification limit. The median breast milk concentrations (minimum - maximum) were 0.20 µg Hg/kg (<0.058-0.89), 0.057 µg Cd/kg (0.017-1.2), and <0.67 µg Pb/kg (<0.2-7.5). Cadmium showed no significant relation with any exposure variable investigated. Lead was associated with intake of liver and kidneys from game. For Hg concentration in breast milk, number of amalgam fillings and high fish consumption were significant predictors (p < 0.001). We detected a significant association (p < 0.01) between Hg in breast milk and maternal consumption of Atlantic halibut, lean fish, mussels and scallops and lifetime consumption of crab. Seafood intake alone explained 10% of variance, while together with amalgam explained 46% of variance in Hg concentration in breast milk. Our findings emphasize the importance of following consumer advice with respect to fish and seafood and points to amalgam as an important source for Hg exposure.


Subject(s)
Cadmium/metabolism , Dental Amalgam/analysis , Diet , Environmental Pollutants/metabolism , Lead/metabolism , Mercury/metabolism , Milk, Human/chemistry , Adult , Female , Humans , Mothers/statistics & numerical data , Norway , Young Adult
14.
Microbiome ; 7(1): 34, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30813950

ABSTRACT

BACKGROUND: Early disruption of the microbial community may influence life-long health. Environmental toxicants can contaminate breast milk and the developing infant gut microbiome is directly exposed. We investigated whether environmental toxicants in breastmilk affect the composition and function of the infant gut microbiome at 1 month. We measured environmental toxicants in breastmilk, fecal short-chain fatty acids (SCFAs), and gut microbial composition from 16S rRNA gene amplicon sequencing using samples from 267 mother-child pairs in the Norwegian Microbiota Cohort (NoMIC). We tested 28 chemical exposures: polychlorinated biphenyls (PCBs), polybrominated flame retardants (PBDEs), per- and polyfluoroalkyl substances (PFASs), and organochlorine pesticides. We assessed chemical exposure and alpha diversity/SCFAs using elastic net regression modeling and generalized linear models, adjusting for confounders, and variation in beta diversity (UniFrac), taxa abundance (ANCOM), and predicted metagenomes (PiCRUSt) in low, medium, and high exposed groups. RESULTS: PBDE-28 and the surfactant perfluorooctanesulfonic acid (PFOS) were associated with less microbiome diversity. Some sub-OTUs of Lactobacillus, an important genus in early life, were lower in abundance in samples from infants with relative "high" (> 80th percentile) vs. "low" (< 20th percentile) toxicant exposure in this cohort. Moreover, breast milk toxicants were associated with microbiome functionality, explaining up to 34% of variance in acetic and propionic SCFAs, essential signaling molecules. Per one standard deviation of exposure, PBDE-28 was associated with less propionic acid (- 24% [95% CI - 35% to - 14%] relative to the mean), and PCB-209 with less acetic acid (- 15% [95% CI - 29% to - 0.4%]). Conversely, PFOA and dioxin-like PCB-167 were associated with 61% (95% CI 35% to 87%) and 22% (95% CI 8% to 35%) more propionic and acetic acid, respectively. CONCLUSIONS: Environmental toxicant exposure may influence infant gut microbial function during a critical developmental window. Future studies are needed to replicate these novel findings and investigate whether this has any impact on child health.


Subject(s)
Bacteria/classification , Environmental Pollutants/adverse effects , Fatty Acids, Volatile/analysis , Gastrointestinal Microbiome/drug effects , Milk, Human/chemistry , Adult , Bacteria/drug effects , Bacteria/genetics , Biodiversity , Cohort Studies , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Environmental Pollutants/analysis , Feces/chemistry , Feces/microbiology , Flame Retardants/adverse effects , Flame Retardants/analysis , Humans , Hydrocarbons, Chlorinated/adverse effects , Hydrocarbons, Chlorinated/analysis , Infant, Newborn , Maternal Age , Metabolomics , Norway , Pesticides/adverse effects , Pesticides/analysis , Polychlorinated Biphenyls/adverse effects , Polychlorinated Biphenyls/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
16.
Environ Int ; 125: 33-42, 2019 04.
Article in English | MEDLINE | ID: mdl-30703609

ABSTRACT

BACKGROUND: Numerous ubiquitous environmental chemicals are established or suspected neurotoxicants, and infants are exposed to a mixture of these during the critical period of brain maturation. However, evidence for associations with the risk of attention-deficit/hyperactivity disorder (ADHD) is sparse. We investigated early-life chemical exposures in relation to ADHD. METHODS: We used a birth cohort of 2606 Norwegian mother-child pairs enrolled 2002-2009 (HUMIS), and studied a subset of 1199 pairs oversampled for child neurodevelopmental outcomes. Concentrations of 27 persistent organic pollutants (14 polychlorinated biphenyls, 5 organochlorine pesticides, 6 brominated flame retardants, and 2 perfluoroalkyl substances) were measured in breast milk, reflecting the child's early-life exposures. We estimated postnatal exposures in the first 2 years of life using a pharmacokinetic model. Fifty-five children had a clinical diagnosis of ADHD (hyperkinetic disorder) by 2016, at a median age of 13 years. We used elastic net penalized logistic regression models to identify associations while adjusting for co-exposure confounding, and subsequently used multivariable logistic regression models to obtain effect estimates for the selected exposures. RESULTS: Breast milk concentrations of perfluorooctane sulfonate (PFOS) and ß­hexachlorocyclohexane (ß-HCH) were associated with increased odds of ADHD: odds ratio (OR) = 1.77, 95% confidence interval (CI): 1.16, 2.72 and OR = 1.75, 95% CI: 1.22, 2.53, per interquartile range increase in ln-transformed concentrations, respectively. Stronger associations were observed among girls than boys for PFOS (pinteraction = 0.025). p,p'­Dichlorodiphenyltrichloroethane (p,p'-DDT) levels were associated with lower odds of ADHD (OR = 0.64, 95% CI: 0.42, 0.97). Hexachlorobenzene (HCB) had a non-linear association with ADHD, with increasing risk in the low-level exposure range that switched to a decreasing risk at concentrations above 8 ng/g lipid. Postnatal exposures showed similar results, whereas effect estimates for other chemicals were weaker and imprecise. CONCLUSIONS: In a multi-pollutant analysis of four classes of chemicals, early-life exposure to ß-HCH and PFOS was associated with increased risk of ADHD, with suggestion of sex-specific effects for PFOS. The unexpected inverse associations between p,p'-DDT and higher HCB levels and ADHD could be due to live birth bias; alternatively, results may be due to chance findings.


Subject(s)
Alkanesulfonic Acids/analysis , Attention Deficit Disorder with Hyperactivity/epidemiology , Environmental Exposure/analysis , Environmental Pollutants/analysis , Flame Retardants/analysis , Fluorocarbons/analysis , Halogenated Diphenyl Ethers/analysis , Hydrocarbons, Chlorinated/analysis , Milk, Human/chemistry , Adolescent , Adult , Child, Preschool , Female , Humans , Infant , Male , Norway/epidemiology , Young Adult
17.
PLoS Med ; 16(2): e1002744, 2019 02.
Article in English | MEDLINE | ID: mdl-30742624

ABSTRACT

BACKGROUND: Maternal obesity and excessive gestational weight gain may have persistent effects on offspring fat development. However, it remains unclear whether these effects differ by severity of obesity, and whether these effects are restricted to the extremes of maternal body mass index (BMI) and gestational weight gain. We aimed to assess the separate and combined associations of maternal BMI and gestational weight gain with the risk of overweight/obesity throughout childhood, and their population impact. METHODS AND FINDINGS: We conducted an individual participant data meta-analysis of data from 162,129 mothers and their children from 37 pregnancy and birth cohort studies from Europe, North America, and Australia. We assessed the individual and combined associations of maternal pre-pregnancy BMI and gestational weight gain, both in clinical categories and across their full ranges, with the risks of overweight/obesity in early (2.0-5.0 years), mid (5.0-10.0 years) and late childhood (10.0-18.0 years), using multilevel binary logistic regression models with a random intercept at cohort level adjusted for maternal sociodemographic and lifestyle-related characteristics. We observed that higher maternal pre-pregnancy BMI and gestational weight gain both in clinical categories and across their full ranges were associated with higher risks of childhood overweight/obesity, with the strongest effects in late childhood (odds ratios [ORs] for overweight/obesity in early, mid, and late childhood, respectively: OR 1.66 [95% CI: 1.56, 1.78], OR 1.91 [95% CI: 1.85, 1.98], and OR 2.28 [95% CI: 2.08, 2.50] for maternal overweight; OR 2.43 [95% CI: 2.24, 2.64], OR 3.12 [95% CI: 2.98, 3.27], and OR 4.47 [95% CI: 3.99, 5.23] for maternal obesity; and OR 1.39 [95% CI: 1.30, 1.49], OR 1.55 [95% CI: 1.49, 1.60], and OR 1.72 [95% CI: 1.56, 1.91] for excessive gestational weight gain). The proportions of childhood overweight/obesity prevalence attributable to maternal overweight, maternal obesity, and excessive gestational weight gain ranged from 10.2% to 21.6%. Relative to the effect of maternal BMI, excessive gestational weight gain only slightly increased the risk of childhood overweight/obesity within each clinical BMI category (p-values for interactions of maternal BMI with gestational weight gain: p = 0.038, p < 0.001, and p = 0.637 in early, mid, and late childhood, respectively). Limitations of this study include the self-report of maternal BMI and gestational weight gain for some of the cohorts, and the potential of residual confounding. Also, as this study only included participants from Europe, North America, and Australia, results need to be interpreted with caution with respect to other populations. CONCLUSIONS: In this study, higher maternal pre-pregnancy BMI and gestational weight gain were associated with an increased risk of childhood overweight/obesity, with the strongest effects at later ages. The additional effect of gestational weight gain in women who are overweight or obese before pregnancy is small. Given the large population impact, future intervention trials aiming to reduce the prevalence of childhood overweight and obesity should focus on maternal weight status before pregnancy, in addition to weight gain during pregnancy.


Subject(s)
Body Mass Index , Data Analysis , Gestational Weight Gain/physiology , Pediatric Obesity/epidemiology , Australia/epidemiology , Cohort Studies , Europe/epidemiology , Female , Humans , North America/epidemiology , Overweight/diagnosis , Overweight/epidemiology , Pediatric Obesity/diagnosis , Pregnancy , Risk Factors
18.
mBio ; 9(5)2018 10 23.
Article in English | MEDLINE | ID: mdl-30352933

ABSTRACT

Childhood obesity is a growing problem worldwide. Recent research suggests that the gut microbiota may play an important and potentially causal role in the development of obesity and may be one mechanism that explains the transgenerational transmission of obesity risk. Here we examine the early-life gut microbiota at days 4, 10, 30, 120, 365, and 730 and the association with body mass index (BMI) z-scores at age 12 in a Norwegian prospective cohort (n = 165), and evaluate how these BMI-associated taxa relate to maternal overweight/obesity (Ow/Ob) and excessive gestational weight gain (GWG). We performed 16S rRNA gene sequencing on the gut microbiota samples. Taxonomic phylogeny at days 10 and 730 was significantly associated with childhood BMI, and the gut microbiota taxa at two years of age explained over 50% of the variation in childhood BMI in this cohort. The subset of the early-life taxa within the gut microbiota that best predicted later childhood BMI showed substantial overlap with the maternal taxa most strongly associated with maternal Ow/Ob and excessive GWG. Our results show an association between the infant gut microbiota and later BMI, and they offer preliminary evidence that the infant gut microbiota, particularly at 2 years of age, may have potential to help identify children at risk for obesity.IMPORTANCE Understanding the role of the early-life gut microbiota in obesity is important because there may be opportunities for preventive strategies. We examined the relationships between infant gut microbiota at six times during the first two years of life and BMI at age 12 in a birth cohort of 165 children and their mothers. We found that the gut microbiota from early life to two years shows an increasingly strong association with childhood BMI. This study provides preliminary evidence that the gut microbiome at 2 years of age may offer useful information to help to identify youth who are at risk for obesity, which could facilitate more-targeted early prevention efforts.


Subject(s)
Bacteria/classification , Body Mass Index , Gastrointestinal Microbiome , Pediatric Obesity , Phylogeny , Age Factors , Bacteria/isolation & purification , Child , Child, Preschool , DNA, Bacterial/genetics , Female , Gestational Weight Gain , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Mothers , Norway , Prospective Studies , RNA, Ribosomal, 16S/genetics , Risk Factors , Weight Gain
19.
Int J Epidemiol ; 47(4): 1082-1097, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29912347

ABSTRACT

Background: Attention-deficit/hyperactivity disorder (ADHD) is increasing worldwide for reasons largely unknown and environmental chemicals with neurotoxic properties, such as persistent organic pollutants (POPs), have been proposed to play a role. We investigated the association between prenatal and postnatal exposure to polychlorinated biphenyl-153 (PCB-153), p-p´-dichlorodiphenyldichloroethylene (p-p'-DDE) and hexachlorobenzene (HCB) and ADHD in childhood. Methods: We pooled seven European birth cohort studies encompassing 4437 mother-child pairs from the general population with concentrations of PCB-153, p-p´-DDE and HCB measured in cord blood, maternal blood or milk. We then calculated prenatal (birth) and postnatal (3, 6, 12 and 24 months) POP concentrations using a pharmacokinetic model. The operational definition of ADHD varied across cohorts and ranged from doctor diagnosis obtained from patient registries to maternal or teachers reports. We used multilevel (mixed) logistic regression models to estimate the associations between exposure to POPs at birth, 3, 6, 12 and 24 months and ADHD. Results: The global prevalence of ADHD in our study was 6%. The mean age at assessment of ADHD was 5.8 years (range: 3.8-9.5 years). We found no association between exposure to PCB-153, p-p´-DDE and HCB at any age point between birth and 24 months and ADHD, in the pooled analyses (pooled odds ratios ranging from 1.00 to 1.01). A number of sensitivity analyses gave basically the same results. Conclusions: In the largest study to date of 4437 children in seven European birth cohorts, we did not observe any association between either pre- or postnatal exposure (up to 24 months) to PCB-153, p-p´-DDE and HCB and the risk of ADHD before the age of 10 years.


Subject(s)
Attention Deficit Disorder with Hyperactivity/epidemiology , Environmental Exposure , Environmental Pollutants/analysis , Fetal Blood/chemistry , Maternal Exposure , Adolescent , Child , Child, Preschool , Cohort Studies , Dichlorodiphenyl Dichloroethylene/blood , Europe/epidemiology , Female , Hexachlorobenzene/blood , Humans , Logistic Models , Male , Polychlorinated Biphenyls/blood , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology
20.
Int J Epidemiol ; 47(5): 1658-1669, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29688458

ABSTRACT

Background: Preterm infants have low gut microbial diversity and few anaerobes. It is unclear whether the low diversity pertains to prematurity itself or is due to differences in delivery mode, feeding mode or exposure to antibiotics. Methods: The Norwegian Microbiota Study (NoMIC) was established to examine the colonization of the infant gut and health outcomes. 16S rRNA gene Illumina amplicon-sequenced samples from 519 children (160 preterms), collected at 10 days, 4 months and 1 year postnatally, were used to calculate alpha diversity. Short-chain fatty acids (SCFA) were analysed with gas chromatography and quantified using flame ionization detection. We regressed alpha diversity on gestational age, taking into account possible confounding and mediating factors, such as breastfeeding and antibiotics. Taxonomic differences were tested using Analysis of Composition of Microbiomes (ANCOM) and SCFA profile (as a functional indicator of the microbiota) was tested by Wilcoxon rank-sum. Results: Preterm infants had 0.45 Shannon units lower bacterial diversity at 10 days postnatally compared with infants born at term (95% confidence interval: -0.60, -0.32). Breastfeeding status and antibiotic exposure were not significant mediators of the gestational age-diversity association, although time spent in the neonatal intensive care unit was. Vaginally born, exclusively breastfed preterm infantss not exposed to antibiotics at 10 days postnatally had fewer Firmicutes and more Proteobacteria than children born at term and an SCFA profile indicating lower saccharolytic fermentation. Conclusions: Preterm infants had distinct gut microbiome composition and function in the early postnatal period, not explained by factors more common in preterms, such as shorter breastfeeding duration, more antibiotics or caesarean delivery.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Breast Feeding , Delivery, Obstetric/classification , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Infant, Premature , Adult , Cesarean Section , Fatty Acids, Volatile/blood , Feces/microbiology , Female , Gestational Age , Humans , Infant , Infant, Newborn , Intensive Care Units, Neonatal , Male , Norway , Pregnancy , RNA, Ribosomal, 16S/genetics , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...