Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Mol Ecol Resour ; 22(2): 803-822, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34562055

ABSTRACT

To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.


Subject(s)
Arthropods , Animals , Arthropods/classification , Biodiversity , DNA Barcoding, Taxonomic , Finland , Gene Library
2.
Oecologia ; 192(4): 1085-1098, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32270268

ABSTRACT

Climate change has shifted geographical ranges of species northwards or to higher altitudes on elevational gradients. These changes have been associated with increases in ambient temperatures. For ectotherms in seasonal environments, however, life history theory relies largely on the length of summer, which varies somewhat independently of ambient temperature per se. Extension of summer reduces seasonal time constraints and enables species to establish in new areas as a result of over-wintering stage reaching in due time. The reduction of time constraints is also predicted to prolong organisms' breeding season when reproductive potential is under selection. We studied temporal change in the summer length and its effect on species' performance by combining long-term data on the occurrence and abundance of nocturnal moths with weather conditions in a boreal location at Värriötunturi fell in NE Finland. We found that summers have lengthened on average 5 days per decade from the late 1970s, profoundly due to increasing delays in the onset of winters. Moth abundance increased with increasing season length a year before. Most of the species occurrences expanded upwards in elevation. Moth communities in low elevation pine heath forest and middle elevation mountain birch forest have become inseparable. Yet, the flight periods have remained unchanged, probably due to unpredictable variation in proximate conditions (weather) that hinders life histories from selection. We conclude that climate change-driven changes in the season length have potential to affect species' ranges and affect the structure of insect assemblages, which may contribute to alteration of ecosystem-level processes.


Subject(s)
Moths , Altitude , Animals , Climate Change , Ecosystem , Finland , Temperature
3.
Ecol Lett ; 23(5): 851-859, 2020 May.
Article in English | MEDLINE | ID: mdl-32207239

ABSTRACT

It has been hypothesised that the 2-year oscillations in abundance of Xestia moths are mediated by interactions with 1-year Ophion parasitoid wasps. We tested this hypothesis by modelling a 35-year time series of Xestia and Ophion from Northern Finland. Additionally, we used DNA barcoding to ascertain the species diversity of Ophion and targeted amplicon sequencing of their gut contents to confirm their larval hosts. Modelling of the time-series data strongly supported the hypothesised host-parasitoid dynamics and that periodic occurrence of Xestia moths is mediated by Ophion. DNA barcodes revealed that Ophion included five species rather than just one while targeted amplicon sequencing verified that Ophion does parasitise Xestia. At least one Ophion species employs 1-year Syngrapha interrogationis as an alternate host, but it did not detectably affect Xestia-Ophion dynamics. We also demonstrate the previously unrecognised complexity of this system due to cryptic parasitoid diversity.


Subject(s)
Moths , Wasps , Animals , Finland , Host-Parasite Interactions , Larva , Sequence Analysis, DNA
4.
Article in English | MEDLINE | ID: mdl-26006298

ABSTRACT

The dynamics of animal populations are greatly influenced by interactions with their natural enemies and food resources. However, quantifying the relative effects of these factors on demographic rates remains a perpetual challenge for animal population ecology. Food scarcity is assumed to limit the growth and to initiate the decline of cyclic herbivore populations, but this has not been verified with physiological health indices. We hypothesized that individuals in declining populations would exhibit signs of malnutrition-induced deterioration of physiological condition. We evaluated the association of body condition with population cycle phase in bank voles (Myodes glareolus) during the increase and decline phases of a population cycle. The bank voles had lower body masses, condition indices and absolute masses of particular organs during the decline. Simultaneously, they had lower femoral masses, mineral contents and densities. Hemoglobin and hematocrit values and several parameters known to respond to food deprivation were unaffected by the population phase. There were no signs of lymphopenia, eosinophilia, granulocytosis or monocytosis. Erythrocyte counts were higher and plasma total protein levels and tissue proportions of essential polyunsaturated fatty acids lower in the population decline. Ectoparasite load was lower and adrenal gland masses or catecholamine concentrations did not suggest higher stress levels. Food availability seems to limit the size of voles during the decline but they can adapt to the prevailing conditions without clear deleterious health effects. This highlights the importance of quantifying individual health state when evaluating the effects of complex trophic interactions on the dynamics of wild animal populations.


Subject(s)
Arvicolinae/physiology , Population Dynamics , Animals , Female , Male
5.
Glob Chang Biol ; 20(6): 1723-37, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24421221

ABSTRACT

Changes in climate are influencing the distribution and abundance of the world's biota, with significant consequences for biological diversity and ecosystem processes. Recent work has raised concern that populations of moths and butterflies (Lepidoptera) may be particularly susceptible to population declines under environmental change. Moreover, effects of climate change may be especially pronounced in high latitude ecosystems. Here, we examine population dynamics in an assemblage of subarctic forest moths in Finnish Lapland to assess current trajectories of population change. Moth counts were made continuously over a period of 32 years using light traps. From 456 species recorded, 80 were sufficiently abundant for detailed analyses of their population dynamics. Climate records indicated rapid increases in temperature and winter precipitation at our study site during the sampling period. However, 90% of moth populations were stable (57%) or increasing (33%) over the same period of study. Nonetheless, current population trends do not appear to reflect positive responses to climate change. Rather, time-series models illustrated that the per capita rates of change of moth species were more frequently associated negatively than positively with climate change variables, even as their populations were increasing. For example, the per capita rates of change of 35% of microlepidoptera were associated negatively with climate change variables. Moth life-history traits were not generally strong predictors of current population change or associations with climate change variables. However, 60% of moth species that fed as larvae on resources other than living vascular plants (e.g. litter, lichen, mosses) were associated negatively with climate change variables in time-series models, suggesting that such species may be particularly vulnerable to climate change. Overall, populations of subarctic forest moths in Finland are performing better than expected, and their populations appear buffered at present from potential deleterious effects of climate change by other ecological forces.


Subject(s)
Biodiversity , Climate Change , Moths/physiology , Animals , Finland , Population Dynamics , Seasons , Species Specificity , Taiga
6.
BMC Ecol ; 12: 27, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-23237274

ABSTRACT

BACKGROUND: A multi-faceted approach was used to investigate the wintertime ecophysiology and behavioral patterns of the raccoon dog, Nyctereutes procyonoides, a suitable model for winter sleep studies. By utilizing GPS tracking, activity sensors, body temperature (Tb) recordings, change-point analysis (CPA), home range, habitat and dietary analyses, as well as fatty acid signatures (FAS), the impact of the species on wintertime food webs was assessed. The timing of passive bouts was determined with multiple methods and compared to Tb data analyzed by CPA. RESULTS: Raccoon dogs displayed wintertime mobility, and the home range sizes determined by GPS were similar or larger than previous estimates by radio tracking. The preferred habitats were gardens, shores, deciduous forests, and sparsely forested areas. Fields had close to neutral preference; roads and railroads were utilized as travel routes. Raccoon dogs participated actively in the food web and gained benefit from human activity. Mammals, plants, birds, and discarded fish comprised the most important dietary classes, and the consumption of fish could be detected in FAS. Ambient temperature was an important external factor influencing Tb and activity. The timing of passive periods approximated by behavioral data and by CPA shared 91% similarity. CONCLUSIONS: Passive periods can be determined with CPA from Tb recordings without the previously used time-consuming and expensive methods. It would be possible to recruit more animals by using the simple methods of data loggers and ear tags. Hunting could be used as a tool to return the ear-tagged individuals allowing the economical extension of follow-up studies. The Tb and CPA methods could be applied to other northern carnivores.


Subject(s)
Behavior, Animal , Body Temperature , Diet , Raccoon Dogs/physiology , Seasons , Sleep , Animals , Ecology/methods , Ecosystem , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...