Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 140: 96-103, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26876832

ABSTRACT

A procedure was developed to recover xylooligosaccharides (XOS) from Miscanthus×giganteus (M×G) hydrolyzate. M×G hydrolyzate was prepared using autohydrolysis, and XOS rich fractions were acquired using activated carbon adsorption and stepwise ethanol elution. The combined XOS fractions were purified using a series of ion exchange resin treatments. The end product, M×G XOS, had 89.1% (w/w) total substituted oligosaccharides (TSOS) composed of arabinose, glucose, xylose and acetyl group. Bifidobacterium adolescentis and Bifidobacterium catenulatum (health promoting bacteria) were cultured in vitro on M×G XOS and a commercial XOS source, which was used as a comparison. B. adolescentis grew to a higher cell density than B. catenulatum in both XOS cultures. Total xylose consumption for B. adolescentis was 84.1 and 84.8%, respectively for M×G and commercial XOS cultures; and for B. catenulatum was 76.6 and 73.6%, respectively. The xylobiose (X2), xylotriose (X3) and xylotetraose (X4) were almost utilized for both strains. Acetic and lactic acids were the major fermentation products of the XOS cultures.


Subject(s)
Bifidobacterium/metabolism , Chemical Fractionation/methods , Fermentation , Glucuronates/isolation & purification , Glucuronates/metabolism , Oligosaccharides/isolation & purification , Oligosaccharides/metabolism , Poaceae/chemistry , Bifidobacterium/cytology , Cell Proliferation , Fatty Acids/biosynthesis , Fatty Acids/chemistry , Glucuronates/biosynthesis , Hydrolysis , Ion Exchange Resins/chemistry , Oligosaccharides/biosynthesis , Xylose/metabolism
2.
Appl Microbiol Biotechnol ; 99(22): 9723-43, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26272089

ABSTRACT

Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.


Subject(s)
Ammonia/metabolism , Carbohydrate Metabolism , Oils/metabolism , Proteins/metabolism , Ultraviolet Rays , Yarrowia/metabolism , Yarrowia/radiation effects , Aerobiosis , Coffee/metabolism , Culture Media/chemistry , Mass Screening , Mutation , Yarrowia/growth & development
3.
Bioresour Technol ; 175: 17-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25459799

ABSTRACT

The production of ethanol from wheat straw (WS) by dilute acid pretreatment, bioabatement of fermentation inhibitors by a fungal strain, and simultaneous saccharification and fermentation (SSF) of the bio-abated WS to ethanol using an ethanologenic recombinant bacterium was studied at a pilot scale without sterilization. WS (124.2g/L) was pretreated with dilute H2SO4 in two parallel tube reactors at 160°C. The inhibitors were bio-abated by growing the fungus aerobically. The maximum ethanol produced by SSF of the bio-abated WS by the recombinant Escherichia coli FBR5 at pH 6.0 and 35°C was 36.0g/L in 83h with a productivity of 0.43gL(-1)h(-1). This value corresponds to an ethanol yield of 0.29g/g of WS which is 86% of the theoretical ethanol yield from WS. This is the first report on the production of ethanol by the recombinant bacterium from a lignocellulosic biomass at a pilot scale.


Subject(s)
Bioreactors/microbiology , Escherichia coli , Ethanol/chemical synthesis , Fermentation , Triticum/chemistry , Biomass , Ethanol/chemistry , Pilot Projects
4.
Environ Technol ; 34(13-16): 1837-48, 2013.
Article in English | MEDLINE | ID: mdl-24350437

ABSTRACT

Switchgrass (Panicum virgatum L.) is a perennial C4 grass that is being developed as a bioenergy crop because it has high production yields and suitable agronomic traits. Five switchgrass biomass samples from upland and lowland switchgrass ecotypes harvested at different stages or maturity were used in this study. Switchgrass samples contained 317.0-385.0 g glucans/kg switchgrass dry basis (db) and 579.3-660.2 g total structural carbohydrates/kg switchgrass, db. Carbohydrate contents were greater for the upland ecotype versus lowland ecotype and increased with harvest maturity. Pretreatment of switchgrass with dilute ammonium hydroxide (8% w/w ammonium loading) at 170 degrees C for 20 min was determined to be effective for preparing switchgrass for enzymatic conversion to monosaccharides; glucose recoveries were 66.9-90.5% and xylose recoveries 60.1-84.2% of maximum and decreased with increased maturity at harvest. Subsequently, pretreated switchgrass samples were converted to ethanol by simultaneous saccharification and fermentation using engineered xylose-fermenting Saccharomyces cerevisiae strain YRH400. Ethanol yields were 176.2-202.01/Mg of switchgrass (db) and followed a similar trend as observed for enzymatic sugar yields.


Subject(s)
Ammonium Hydroxide/chemistry , Biofuels , Ethanol/metabolism , Panicum/chemistry , Panicum/metabolism , Biomass , Biotechnology , Ethanol/analysis , Ethanol/chemistry , Fermentation , Glucose/analysis , Glucose/metabolism , Xylose/analysis , Xylose/metabolism
5.
Environ Sci Technol ; 46(18): 10229-38, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22894772

ABSTRACT

To maximize the production of carboxylic acids with open cultures of microbial consortia (reactor microbiomes), we performed experiments to understand which factors affect the community dynamics and performance parameters. We operated six thermophilic (55 °C) bioreactors to test how the factors: (i) biomass pretreatment; (ii) bioreactor operating conditions; and (iii) bioreactor history (after perturbations during the operating period) affected total fermentation product and n-butyrate performance parameters with corn fiber as the cellulosic biomass waste. We observed a maximum total fermentation product yield of 39%, a n-butyrate yield of 23% (both on a COD basis), a maximum total fermentation production rate of 0.74 g COD l(-1) d(-1) and n-butyrate production rate of 0.47 g COD l(-1) d(-1) in bioreactors that were fed with dilute-acid pretreated corn fiber at a pH of 5.5. Pyrosequencing of 16S rRNA genes with constrained ordination and other statistical methods showed that changes in operating conditions to enable dilution of toxic carboxylic acid products, which lead to these maximum performance parameters, also altered the composition of the microbiome, and that the microbiome, in turn, affected the performance. Operating conditions are an important factor (tool for operators) to shape reactor microbiomes, but other factors, such as substrate composition after biomass pretreatment and bioreactor history are also important. Further optimization of operating conditions must relieve the toxicity of carboxylic acids at acidic bioreactor pH levels even more, and this can, for example, be accomplished by extracting the product from the bioreactor solutions.


Subject(s)
Bioreactors/microbiology , Butyrates/metabolism , Cellulose/metabolism , Biomass , Fermentation , Models, Molecular , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/isolation & purification , Thermoanaerobacterium/genetics , Thermoanaerobacterium/metabolism
6.
Biotechnol Prog ; 21(3): 816-22, 2005.
Article in English | MEDLINE | ID: mdl-15932261

ABSTRACT

Rice hulls, a complex lignocellulosic material with high lignin (15.38 +/- 0.2%) and ash (18.71 +/- 0.01%) content, contain 35.62 +/- 0.12% cellulose and 11.96 +/- 0.73% hemicellulose and has the potential to serve as a low-cost feedstock for production of ethanol. Dilute H2SO4 pretreatments at varied temperature (120-190 degrees C) and enzymatic saccharification (45 degrees C, pH 5.0) were evaluated for conversion of rice hull cellulose and hemicellulose to monomeric sugars. The maximum yield of monomeric sugars from rice hulls (15%, w/v) by dilute H2SO4 (1.0%, v/v) pretreatment and enzymatic saccharification (45 degrees C, pH 5.0, 72 h) using cellulase, beta-glucosidase, xylanase, esterase, and Tween 20 was 287 +/- 3 mg/g (60% yield based on total carbohydrate content). Under this condition, no furfural and hydroxymethyl furfural were produced. The yield of ethanol per L by the mixed sugar utilizing recombinant Escherichia colistrain FBR 5 from rice hull hydrolyzate containing 43.6 +/- 3.0 g fermentable sugars (glucose, 18.2 +/- 1.4 g; xylose, 21.4 +/- 1.1 g; arabinose, 2.4 +/- 0.3 g; galactose, 1.6 +/- 0.2 g) was 18.7 +/- 0.6 g (0.43 +/- 0.02 g/g sugars obtained; 0.13 +/- 0.01 g/g rice hulls) at pH 6.5 and 35 degrees C. Detoxification of the acid- and enzyme-treated rice hull hydrolyzate by overliming (pH 10.5, 90 degrees C, 30 min) reduced the time required for maximum ethanol production (17 +/- 0.2 g from 42.0 +/- 0.7 g sugars per L) by the E. coli strain from 64 to 39 h in the case of separate hydrolysis and fermentation and increased the maximum ethanol yield (per L) from 7.1 +/- 2.3 g in 140 h to 9.1 +/- 0.7 g in 112 h in the case of simultaneous saccharification and fermentation.


Subject(s)
Carbohydrate Metabolism , Carbohydrates/chemistry , Cellulase/chemistry , Escherichia coli/metabolism , Ethanol/metabolism , Oryza/chemistry , Sulfuric Acids/chemistry , Cell Culture Techniques/methods , Combinatorial Chemistry Techniques , Culture Media/chemistry , Fermentation/physiology , Seeds/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...