Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Biostatistics ; 23(3): 860-874, 2022 07 18.
Article in English | MEDLINE | ID: mdl-33616173

ABSTRACT

For large-scale testing with graph-associated data, we present an empirical Bayes mixture technique to score local false-discovery rates (FDRs). Compared to procedures that ignore the graph, the proposed Graph-based Mixture Model (GraphMM) method gains power in settings where non-null cases form connected subgraphs, and it does so by regularizing parameter contrasts between testing units. Simulations show that GraphMM controls the FDR in a variety of settings, though it may lose control with excessive regularization. On magnetic resonance imaging data from a study of brain changes associated with the onset of Alzheimer's disease, GraphMM produces greater yield than conventional large-scale testing procedures.


Subject(s)
Brain , Magnetic Resonance Imaging , Bayes Theorem , Brain/diagnostic imaging , Humans , Research Design
2.
JASA Express Lett ; 1(4): 044401, 2021 04.
Article in English | MEDLINE | ID: mdl-36154203

ABSTRACT

Linear comparisons can fail to describe perceptual differences between head-related transfer functions (HRTFs), reducing their utility for perceptual tests, HRTF selection methods, and prediction algorithms. This work introduces a machine learning framework for constructing a perceptual error metric that is aligned with performance in human sound localization. A neural network is first trained to predict measurement locations from a large database of HRTFs and then fine-tuned with perceptual data. It demonstrates robust model performance over a standard spectral difference error metric. A statistical test is employed to quantify the information gain from the perceptual observations as a function of space.


Subject(s)
Auditory Perception , Sound Localization , Algorithms , Benchmarking , Humans
3.
Neuroimage ; 159: 79-98, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28720551

ABSTRACT

Permutation testing is a non-parametric method for obtaining the max null distribution used to compute corrected p-values that provide strong control of false positives. In neuroimaging, however, the computational burden of running such an algorithm can be significant. We find that by viewing the permutation testing procedure as the construction of a very large permutation testing matrix, T, one can exploit structural properties derived from the data and the test statistics to reduce the runtime under certain conditions. In particular, we see that T is low-rank plus a low-variance residual. This makes T a good candidate for low-rank matrix completion, where only a very small number of entries of T (∼0.35% of all entries in our experiments) have to be computed to obtain a good estimate. Based on this observation, we present RapidPT, an algorithm that efficiently recovers the max null distribution commonly obtained through regular permutation testing in voxel-wise analysis. We present an extensive validation on a synthetic dataset and four varying sized datasets against two baselines: Statistical NonParametric Mapping (SnPM13) and a standard permutation testing implementation (referred as NaivePT). We find that RapidPT achieves its best runtime performance on medium sized datasets (50≤n≤200), with speedups of 1.5× - 38× (vs. SnPM13) and 20x-1000× (vs. NaivePT). For larger datasets (n≥200) RapidPT outperforms NaivePT (6× - 200×) on all datasets, and provides large speedups over SnPM13 when more than 10000 permutations (2× - 15×) are needed. The implementation is a standalone toolbox and also integrated within SnPM13, able to leverage multi-core architectures when available.


Subject(s)
Algorithms , Brain , Image Processing, Computer-Assisted/methods , Neuroimaging/methods , Humans , Statistics, Nonparametric
4.
Article in English | MEDLINE | ID: mdl-29416293

ABSTRACT

Multiresolution analysis and matrix factorization are foundational tools in computer vision. In this work, we study the interface between these two distinct topics and obtain techniques to uncover hierarchical block structure in symmetric matrices - an important aspect in the success of many vision problems. Our new algorithm, the incremental multiresolution matrix factorization, uncovers such structure one feature at a time, and hence scales well to large matrices. We describe how this multiscale analysis goes much farther than what a direct "global" factorization of the data can identify. We evaluate the efficacy of the resulting factorizations for relative leveraging within regression tasks using medical imaging data. We also use the factorization on representations learned by popular deep networks, providing evidence of their ability to infer semantic relationships even when they are not explicitly trained to do so. We show that this algorithm can be used as an exploratory tool to improve the network architecture, and within numerous other settings in vision.

5.
Proc Mach Learn Res ; 70: 4170-4179, 2017 Aug.
Article in English | MEDLINE | ID: mdl-31742253

ABSTRACT

Many studies in biomedical and health sciences involve small sample sizes due to logistic or financial constraints. Often, identifying weak (but scientifically interesting) associations between a set of predictors and a response necessitates pooling datasets from multiple diverse labs or groups. While there is a rich literature in statistical machine learning to address distributional shifts and inference in multi-site datasets, it is less clear when such pooling is guaranteed to help (and when it does not) - independent of the inference algorithms we use. In this paper, we present a hypothesis test to answer this question, both for classical and high dimensional linear regression. We precisely identify regimes where pooling datasets across multiple sites is sensible, and how such policy decisions can be made via simple checks executable on each site before any data transfer ever happens. With a focus on Alzheimer's disease studies, we present empirical results showing that in regimes suggested by our analysis, pooling a local dataset with data from an international study improves power.

6.
Sci Rep ; 6: 31732, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27558973

ABSTRACT

Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13-17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain.


Subject(s)
Drug Delivery Systems , Nasal Mucosa/blood supply , Nasal Mucosa/metabolism , Administration, Intranasal , Animals , Area Under Curve , Capillary Permeability , Diffusion , Female , Hydrodynamics , Lymph Nodes/metabolism , Olfactory Mucosa/metabolism , Optical Imaging , Pharmaceutical Preparations/metabolism , Rats , Rats, Sprague-Dawley , Serum Albumin, Bovine/chemistry , Xanthenes/chemistry
7.
JMLR Workshop Conf Proc ; 48: 583-592, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28479945

ABSTRACT

Budget constrained optimal design of experiments is a well studied problem. Although the literature is very mature, not many strategies are available when these design problems appear in the context of sparse linear models commonly encountered in high dimensional machine learning. In this work, we study this budget constrained design where the underlying regression model involves a ℓ1-regularized linear function. We propose two novel strategies: the first is motivated geometrically whereas the second is algebraic in nature. We obtain tractable algorithms for this problem which also hold for a more general class of sparse linear models. We perform a detailed set of experiments, on benchmarks and a large neuroimaging study, showing that the proposed models are effective in practice. The latter experiment suggests that these ideas may play a small role in informing enrollment strategies for similar scientific studies in the future.

8.
Adv Neural Inf Process Syst ; 29: 2496-2504, 2016.
Article in English | MEDLINE | ID: mdl-29308004

ABSTRACT

Consider samples from two different data sources [Formula: see text] and [Formula: see text]. We only observe their transformed versions [Formula: see text] and [Formula: see text], for some known function class h(·) and g(·). Our goal is to perform a statistical test checking if Psource = Ptarget while removing the distortions induced by the transformations. This problem is closely related to domain adaptation, and in our case, is motivated by the need to combine clinical and imaging based biomarkers from multiple sites and/or batches - a fairly common impediment in conducting analyses with much larger sample sizes. We address this problem using ideas from hypothesis testing on the transformed measurements, wherein the distortions need to be estimated in tandem with the testing. We derive a simple algorithm and study its convergence and consistency properties in detail, and provide lower-bound strategies based on recent work in continuous optimization. On a dataset of individuals at risk for Alzheimer's disease, our framework is competitive with alternative procedures that are twice as expensive and in some cases operationally infeasible to implement.

9.
Alzheimers Dement ; 11(12): 1489-1499, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26093156

ABSTRACT

The mild cognitive impairment (MCI) stage of Alzheimer's disease (AD) may be optimal for clinical trials to test potential treatments for preventing or delaying decline to dementia. However, MCI is heterogeneous in that not all cases progress to dementia within the time frame of a trial and some may not have underlying AD pathology. Identifying those MCIs who are most likely to decline during a trial and thus most likely to benefit from treatment will improve trial efficiency and power to detect treatment effects. To this end, using multimodal, imaging-derived, inclusion criteria may be especially beneficial. Here, we present a novel multimodal imaging marker that predicts future cognitive and neural decline from [F-18]fluorodeoxyglucose positron emission tomography (PET), amyloid florbetapir PET, and structural magnetic resonance imaging, based on a new deep learning algorithm (randomized denoising autoencoder marker, rDAm). Using ADNI2 MCI data, we show that using rDAm as a trial enrichment criterion reduces the required sample estimates by at least five times compared with the no-enrichment regime and leads to smaller trials with high statistical power, compared with existing methods.


Subject(s)
Algorithms , Cognitive Dysfunction , Magnetic Resonance Imaging/methods , Multimodal Imaging , Positron-Emission Tomography/methods , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides , Biomarkers , Clinical Trials as Topic , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Disease Progression , Female , Humans , Male
10.
Proc IEEE Int Conf Comput Vis ; 2015: 1841-1849, 2015 Dec.
Article in English | MEDLINE | ID: mdl-27081374

ABSTRACT

Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of applications ranging from estimation problems in multi-view geometry to image segmentation. Few other linear algebra problems have a more mature set of numerical routines available and many computer vision libraries leverage such tools extensively. However, the ability to call the underlying solver only as a "black box" can often become restrictive. Many 'human in the loop' settings in vision frequently exploit supervision from an expert, to the extent that the user can be considered a subroutine in the overall system. In other cases, there is additional domain knowledge, side or even partial information that one may want to incorporate within the formulation. In general, regularizing a (generalized) eigenvalue problem with such side information remains difficult. Motivated by these needs, this paper presents an optimization scheme to solve generalized eigenvalue problems (GEP) involving a (nonsmooth) regularizer. We start from an alternative formulation of GEP where the feasibility set of the model involves the Stiefel manifold. The core of this paper presents an end to end stochastic optimization scheme for the resultant problem. We show how this general algorithm enables improved statistical analysis of brain imaging data where the regularizer is derived from other 'views' of the disease pathology, involving clinical measurements and other image-derived representations.

11.
Hum Brain Mapp ; 35(8): 4219-35, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24510744

ABSTRACT

Precise detection and quantification of white matter hyperintensities (WMH) observed in T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age-related neurological disorders such as Alzheimer's disease (AD). This is mainly because WMH may reflect co-morbid neural injury or cerebral vascular disease burden. WMH in the older population may be small, diffuse, and irregular in shape, and sufficiently heterogeneous within and across subjects. Here, we pose hyperintensity detection as a supervised inference problem and adapt two learning models, specifically, Support Vector Machines and Random Forests, for this task. Using texture features engineered by texton filter banks, we provide a suite of effective segmentation methods for this problem. Through extensive evaluations on healthy middle-aged and older adults who vary in AD risk, we show that our methods are reliable and robust in segmenting hyperintense regions. A measure of hyperintensity accumulation, referred to as normalized effective WMH volume, is shown to be associated with dementia in older adults and parental family history in cognitively normal subjects. We provide an open source library for hyperintensity detection and accumulation (interfaced with existing neuroimaging tools), that can be adapted for segmentation problems in other neuroimaging studies.


Subject(s)
Aging/pathology , Alzheimer Disease/pathology , Artificial Intelligence , Brain/pathology , Magnetic Resonance Imaging/methods , White Matter/pathology , Aged , Aged, 80 and over , Cognitive Dysfunction/pathology , Cohort Studies , Female , Humans , Linear Models , Male , Middle Aged , Risk , Signal Processing, Computer-Assisted , Support Vector Machine
12.
Adv Neural Inf Process Syst ; 2013: 890-898, 2013.
Article in English | MEDLINE | ID: mdl-25309108

ABSTRACT

Multiple hypothesis testing is a significant problem in nearly all neuroimaging studies. In order to correct for this phenomena, we require a reliable estimate of the Family-Wise Error Rate (FWER). The well known Bonferroni correction method, while simple to implement, is quite conservative, and can substantially under-power a study because it ignores dependencies between test statistics. Permutation testing, on the other hand, is an exact, non-parametric method of estimating the FWER for a given α-threshold, but for acceptably low thresholds the computational burden can be prohibitive. In this paper, we show that permutation testing in fact amounts to populating the columns of a very large matrix P. By analyzing the spectrum of this matrix, under certain conditions, we see that P has a low-rank plus a low-variance residual decomposition which makes it suitable for highly sub-sampled - on the order of 0.5% - matrix completion methods. Based on this observation, we propose a novel permutation testing methodology which offers a large speedup, without sacrificing the fidelity of the estimated FWER. Our evaluations on four different neuroimaging datasets show that a computational speedup factor of roughly 50× can be achieved while recovering the FWER distribution up to very high accuracy. Further, we show that the estimated α-threshold is also recovered faithfully, and is stable.

SELECTION OF CITATIONS
SEARCH DETAIL
...