Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Chem ; 8: 681, 2020.
Article in English | MEDLINE | ID: mdl-32850679

ABSTRACT

Performance decline in Li-excess cathodes is generally attributed to structural degradation at the electrode-electrolyte interphase, including transition metal migration into the lithium layer and oxygen evolution into the electrolyte. Reactions between these new surface structures and/or reactive oxygen species in the electrolyte can lead to the formation of a cathode electrolyte interphase (CEI) on the surface of the electrode, though the link between CEI composition and the performance of Li-excess materials is not well understood. To bridge this gap in understanding, we use solid-state nuclear magnetic resonance (SSNMR) spectroscopy, dynamic nuclear polarization (DNP) NMR, and electrochemical impedance spectroscopy (EIS) to assess the chemical composition and impedance of the CEI on Li2RuO3 as a function of state of charge and cycle number. We show that the CEI that forms on Li2RuO3 when cycled in carbonate-containing electrolytes is similar to the solid electrolyte interphase (SEI) that has been observed on anode materials, containing components such as PEO, Li acetate, carbonates, and LiF. The CEI composition deposited on the cathode surface on charge is chemically distinct from that observed upon discharge, supporting the notion of crosstalk between the SEI and the CEI, with Li+-coordinating species leaving the CEI during delithiation. Migration of the outer CEI combined with the accumulation of poor ionic conducting components on the static inner CEI may contribute to the loss of performance over time in Li-excess cathode materials.

2.
J Magn Reson ; 308: 106574, 2019 11.
Article in English | MEDLINE | ID: mdl-31541931

ABSTRACT

Solid state NMR is a powerful tool to probe membrane protein structure and dynamics in native lipid membranes. Sample heating during solid state NMR experiments can be caused by magic angle spinning and radio frequency irradiation such heating produces uncertainties in the sample temperature and temperature distribution, which can in turn lead to line broadening and sample deterioration. To measure sample temperatures in real time and to quantify thermal gradients and their dependence on radio frequency irradiation or spinning frequency, we use the chemical shift thermometer TmDOTP, a lanthanide complex. The H6 TmDOTP proton NMR peak has a large chemical shift (-176.3 ppm at 275 K) and it is well resolved from the protein and lipid proton spectrum. Compared to other NMR thermometers (e.g., the proton NMR signal of water), the proton spectrum of TmDOTP, particularly the H6 proton line, exhibits very high thermal sensitivity and resolution. In MAS studies of proteoliposomes we identify two populations of TmDOTP with differing temperatures and dependency on the radio frequency irradiation power. We interpret these populations as arising from the supernatant and the pellet, which is sedimented during sample spinning. In this study, we demonstrate that TmDOTP is an excellent internal standard for monitoring real-time temperatures of biopolymers without changing their properties or obscuring their spectra. Real time temperature calibration is expected to be important for the interpretation of dynamics and other properties of biopolymers.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Oxazoles/chemistry , Pyrimidinones/chemistry , Thermometry/instrumentation , Biopolymers , Calibration , Computer Systems , Indicators and Reagents , Liposomes/chemistry , Magnetic Resonance Spectroscopy/methods , Protons , Radio Waves , Temperature , Thermometers , Thermometry/methods
3.
J Biol Chem ; 293(52): 20157-20168, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30385508

ABSTRACT

Natural brown-black eumelanin pigments confer structural coloration in animals and potently block ionizing radiation and antifungal drugs. These functions also make them attractive for bioinspired materials design, including coating materials for drug-delivery vehicles, strengthening agents for adhesive hydrogel materials, and free-radical scavengers for soil remediation. Nonetheless, the molecular determinants of the melanin "developmental road traveled" and the resulting architectural features have remained uncertain because of the insoluble, heterogeneous, and amorphous characteristics of these complex polymeric assemblies. Here, we used 2D solid-state NMR, EPR, and dynamic nuclear polarization spectroscopic techniques, assisted in some instances by the use of isotopically enriched precursors, to address several open questions regarding the molecular structures and associated functions of eumelanin. Our findings uncovered: 1) that the identity of the available catecholamine precursor alters the structure of melanin pigments produced either in Cryptococcus neoformans fungal cells or under cell-free conditions; 2) that the identity of the available precursor alters the scaffold organization and membrane lipid content of melanized fungal cells; 3) that the fungal cells are melanized preferentially by an l-DOPA precursor; and 4) that the macromolecular carbon- and nitrogen-based architecture of cell-free and fungal eumelanins includes indole, pyrrole, indolequinone, and open-chain building blocks that develop depending on reaction time. In conclusion, the availability of catecholamine precursors plays an important role in eumelanin development by affecting the efficacy of pigment formation, the melanin molecular structure, and its underlying scaffold in fungal systems.


Subject(s)
Cryptococcus neoformans/metabolism , Levodopa/metabolism , Melanins/biosynthesis , Cell-Free System/chemistry , Cell-Free System/metabolism , Cryptococcus neoformans/chemistry , Levodopa/chemistry , Melanins/chemistry
4.
Biochemistry ; 57(10): 1568-1571, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29465229

ABSTRACT

While solid-state nuclear magnetic resonance (ssNMR) has emerged as a powerful technique for studying viral capsids, current studies are limited to capsids formed from single proteins or single polyproteins. The ability to selectively label individual protein components within multiprotein viral capsids and the resulting spectral simplification will facilitate the extension of ssNMR techniques to complex viruses. In vitro capsid assembly by combining individually purified, labeled, and unlabeled components in NMR quantities is not a viable option for most viruses. To overcome this barrier, we present a method that utilizes sequential protein expression and in cell assembly of component-specifically labeled viral capsids in amounts suitable for NMR studies. We apply this approach to purify capsids of bacteriophage ϕ6 isotopically labeled on only one of its four constituent protein components, the NTPase P4. Using P4-labeled ϕ6 capsids and the sensitivity enhancement provided by dynamic nuclear polarization, we illustrate the utility of this method to enable ssNMR studies of complex viruses.


Subject(s)
Capsid/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Viral Proteins/metabolism , Virus Assembly , Bacteriophage phi 6 , Microscopy, Electron, Transmission
5.
J Magn Reson ; 287: 110-112, 2018 02.
Article in English | MEDLINE | ID: mdl-29335163

ABSTRACT

We demonstrate that N,N-Diethylmethylamine (DEMA) is a useful compound for shimming the magnetic field when doing NMR experiments at room temperature and 130 K, near the temperature used in many dynamic nuclear polarization (DNP) experiments. The resonance assigned to the N-methyl carbon in DEMA at 14.7 T and 140 K has a full-width-half-max linewidth of <4 Hz and has a spin-lattice relaxation time of 0.17 ±â€¯0.03 s.


Subject(s)
Diethylamines/chemistry , Magnetic Resonance Spectroscopy/standards , Pressure , Temperature
6.
Methods Mol Biol ; 1688: 133-154, 2018.
Article in English | MEDLINE | ID: mdl-29151208

ABSTRACT

Solid-state NMR (SSNMR) is a powerful tool for the elucidation of structure and dynamics in biological macromolecules. Over the years, SSNMR spectroscopists have developed an array of techniques enabling the measurement of internuclear correlations, distances, and torsional angles; these have been applied to the study of a number of biological systems that are difficult to study by X-ray crystallography and solution NMR, including key biological targets such as membrane proteins and amyloid fibrils. Applications of SSNMR to other topic areas, including materials science, pharmaceuticals, and small molecules, have also flourished in recent years. These studies, however, have always been hampered by the low inherent sensitivity of SSNMR, requiring large amounts of both sample and time for data collection. By taking advantage of unpaired electrons doped into a sample as a ready source of additional nuclear polarization, dynamic nuclear polarization (DNP) has brought about large improvements in SSNMR sensitivity. These, in turn, have enabled structural studies of previously inaccessible targets, such as large protein complexes, nucleic acids, viral capsids, and membrane proteins in vivo. Herein, we focus on sample preparation strategies and considerations for scientists interested in applying DNP to challenging systems.


Subject(s)
Amyloid/chemistry , Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Specimen Handling/methods , Amyloid/metabolism , Animals , Humans , Membrane Proteins/metabolism
7.
Biochem Biophys Rep ; 10: 132-136, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28955740

ABSTRACT

Lipid microdomains ('lipid rafts') are plasma membrane subregions, enriched in cholesterol and glycosphingolipids, which participate dynamically in cell signaling and molecular trafficking operations. One strategy for the study of the physicochemical properties of lipid rafts in model membrane systems has been the use of nuclear magnetic resonance (NMR), but until now this spectroscopic method has not been considered a clinically relevant tool. We performed a proof-of-concept study to test the feasibility of using NMR to study lipid rafts in human tissues. Platelets were selected as a cost-effective and minimally invasive model system in which lipid rafts have previously been studied using other approaches. Platelets were isolated from plasma of medication-free adult research participants (n=13) and lysed with homogenization and sonication. Lipid-enriched fractions were obtained using a discontinuous sucrose gradient. Association of lipid fractions with GM1 ganglioside was tested using HRP-conjugated cholera toxin B subunit dot blot assays. 1H high resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) spectra obtained with single-pulse Bloch decay experiments yielded spectral linewidths and intensities as a function of temperature. Rates of lipid lateral diffusion that reported on raft size were measured with a two-dimensional stimulated echo longitudinal encode-decode NMR experiment. We found that lipid fractions at 10-35% sucrose density associated with GM1 ganglioside, a marker for lipid rafts. NMR spectra of the membrane phospholipids featured a prominent 'centerband' peak associated with the hydrocarbon chain methylene resonance at 1.3 ppm; the linewidth (full width at half-maximum intensity) of this 'centerband' peak, together with the ratio of intensities between the centerband and 'spinning sideband' peaks, agreed well with values reported previously for lipid rafts in model membranes. Decreasing temperature produced decreases in the 1.3 ppm peak intensity and a discontinuity at ~18 °C, for which the simplest explanation is a phase transition from Ld to Lo phases indicative of raft formation. Rates of lateral diffusion of the acyl chain lipid signal at 1.3 ppm, a quantitative measure of microdomain size, were consistent with lipid molecules organized in rafts. These results show that HRMAS NMR can characterize lipid microdomains in human platelets, a methodological advance that could be extended to other tissues in which membrane biochemistry may have physiological and pathophysiological relevance.

8.
Biochem Biophys Rep ; 10: 172-177, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28955744

ABSTRACT

Elastic fibers, a major component of the extracellular matrix of the skin, are often exposed to ultraviolet (UV) radiation throughout mammalian life. We report on an in vitro study of the alterations in bovine nuchal ligament elastic fibers resulting from continuous UV-A exposure by the use of transmission electron microscopy (TEM), histology, mass spectrometry, and solid state 13C NMR methodologies. TEM images reveal distinct cracks in elastic fibers as a result of UV-A irradiation and histological measurements show a disruption in the regular array of elastic fibers present in unirradiated samples; elastic fibers appear shorter, highly fragmented, and thinner after UV-A treatment. Magic angle spinning 13C NMR was applied to investigate possible secondary structural changes or dynamics in the irradiated samples; our spectra reveal no differences between UV-A irradiated and non-irradiated samples. Lastly, MALDI mass spectrometry indicates that the concentration of desmosine, which forms cross-links in elastin, is observed to decrease by 11 [Formula: see text] following 9 days of continuous UV-A irradiation, in comparison to unirradiated samples. These alterations presumably play a significant role in the loss of elasticity observed in UV exposed skin.

9.
Proc Natl Acad Sci U S A ; 114(20): 5171-5176, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28461483

ABSTRACT

An experimental strategy has been developed to increase the efficiency of dynamic nuclear polarization (DNP) in solid-state NMR studies. The method makes assignments simpler, faster, and more reliable via sequential correlations of both side-chain and Cα resonances. The approach is particularly suited to complex biomolecules and systems with significant chemical-shift degeneracy. It was designed to overcome the spectral congestion and line broadening that occur due to sample freezing at the cryogenic temperatures required for DNP. Nonuniform sampling (NUS) is incorporated to achieve time-efficient collection of multidimensional data. Additionally, fast (25 kHz) magic-angle spinning (MAS) provides optimal sensitivity and resolution. Data collected in <1 wk produced a virtually complete de novo assignment of the coat protein of Pf1 virus. The peak positions and linewidths for samples near 100 K are perturbed relative to those near 273 K. These temperature-induced perturbations are strongly correlated with hydration surfaces.


Subject(s)
Bacteriophage Pf1/chemistry , Nuclear Magnetic Resonance, Biomolecular , Pseudomonas aeruginosa/virology , Bacteriophage Pf1/metabolism
10.
ACS Nano ; 10(4): 4847-56, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27046054

ABSTRACT

Graphene nanoribbons (GNRs) with robust electronic band gaps are promising candidate materials for nanometer-scale electronic circuits. Realizing their full potential, however, will depend on the ability to access GNRs with prescribed widths and edge structures and an understanding of their fundamental electronic properties. We report field-effect devices exhibiting ambipolar transport in accumulation mode composed of solution-synthesized GNRs with straight armchair edges. Temperature-dependent electrical measurements specify thermally activated charge transport, which we attribute to inter-ribbon hopping. With access to structurally precise materials in practical quantities and by overcoming processing difficulties in making electrical contacts to these materials, we have demonstrated critical steps toward nanoelectric devices based on solution-synthesized GNRs.

11.
J Biol Chem ; 290(22): 13779-90, 2015 May 29.
Article in English | MEDLINE | ID: mdl-25825492

ABSTRACT

Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment "ghosts" and applied 2D (13)C-(13)C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics.


Subject(s)
Carbon/chemistry , Cell Wall/chemistry , Cryptococcus neoformans/chemistry , Magnetic Resonance Spectroscopy/methods , Melanins/chemistry , Drug Delivery Systems , Free Radicals/chemistry , Glucose/chemistry , Glycerides/chemistry , Indoles/chemistry , Levodopa/chemistry , Pigmentation , Polysaccharides/chemistry , Virulence Factors/chemistry
12.
Org Biomol Chem ; 12(34): 6730-6, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-25047903

ABSTRACT

Despite the essential functions of melanin pigments in diverse organisms and their roles in inspiring designed nanomaterials for electron transport and drug delivery, the structural frameworks of the natural materials and their biomimetic analogs remain poorly understood. To overcome the investigative challenges posed by these insoluble heterogeneous pigments, we have used l-tyrosine or dopamine enriched with stable (13)C and (15)N isotopes to label eumelanins metabolically in cell-free and Cryptococcus neoformans cell systems and to define their molecular structures and supramolecular architectures. Using high-field two-dimensional solid-state nuclear magnetic resonance (NMR), our study directly evaluates the assumption of structural commonality between synthetic melanin models and the corresponding natural pigments, demonstrating a common indole-based aromatic core in the products from contrasting synthetic protocols for the first time.


Subject(s)
Cryptococcus neoformans/metabolism , Melanins/biosynthesis , Melanins/chemistry , Subcellular Fractions/metabolism , Carbon Isotopes , Cryptococcus neoformans/chemistry , Dopamine/chemistry , Dopamine/metabolism , Magnetic Resonance Spectroscopy , Melanins/chemical synthesis , Molecular Conformation , Nitrogen Isotopes , Staining and Labeling , Subcellular Fractions/chemistry , Tyrosine/chemistry , Tyrosine/metabolism
13.
Proc Natl Acad Sci U S A ; 110(40): 15991-6, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24043827

ABSTRACT

Transition state analogs mimic the geometry and electronics of the transition state of enzymatic reactions. These molecules bind to the active site of the enzyme much tighter than substrate and are powerful noncovalent inhibitors. Immucillin-H (ImmH) and 4'-deaza-1'-aza-2'-deoxy-9-methylene Immucillin-H (DADMe-ImmH) are picomolar inhibitors of human purine nucleoside phosphorylase (hPNP). Although both molecules are electronically similar to the oxocarbenium-like dissociative hPNP transition state, DADMe-ImmH is more potent than ImmH. DADMe-ImmH captures more of the transition state binding energy by virtue of being a closer geometric match to the hPNP transition state than ImmH. A consequence of these similarities is that the active site of hPNP exerts greater distortional forces on ImmH than on DADMe-ImmH to "achieve" the hPNP transition state geometry. By using magic angle spinning solid-state NMR to investigate stable isotope-labeled ImmH and DADMe-ImmH, we have explored the difference in distortional binding of these two inhibitors to hPNP. High-precision determinations of internuclear distances from NMR recoupling techniques, rotational echo double resonance, and rotational resonance, have provided unprecedented atomistic insight into the geometric changes that occur upon binding of transition state analogs. We conclude that hPNP stabilizes conformations of these chemically distinct analogs having distances between the cation and leaving groups resembling those of the known transition state.


Subject(s)
Models, Molecular , Protein Conformation , Purine-Nucleoside Phosphorylase/chemistry , Humans , Magnetic Resonance Imaging , Molecular Structure , Protein Binding , Purine-Nucleoside Phosphorylase/metabolism
14.
Biochemistry ; 51(31): 6080-8, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22765382

ABSTRACT

Melanins are a class of natural pigments associated with a wide range of biological functions, including microbial virulence, energy transduction, and protection against solar radiation. Because of their insolubility and structural heterogeneity, solid-state nuclear magnetic resonance (NMR) spectroscopy provides an unprecedented means to define the molecular architecture of these enigmatic pigments. The requirement of obligatory catecholamines for melanization of the pathogenic fungus Cryptococcus neoformans also offers unique opportunities for investigating melanin development. In the current study, pigments produced with L-dopa, methyl-L-dopa, epinephrine, and norepinephrine precursors are compared structurally using (13)C and (1)H magic-angle spinning (MAS) NMR. Striking structural differences were observed for both aromatic and aliphatic molecular constituents of the mature fungal pigment assemblies, thus making it possible to redefine the molecular prerequisites for formation of the aromatic domains of insoluble indole-based biopolymers, to rationalize their distinctive physical characteristics, and to delineate the role of cellular constituents in assembly of the melanized macromolecules with polysaccharides and fatty acyl chain-containing moieties. By achieving an augmented understanding of the mechanisms of C. neoformans melanin biosynthesis and cellular assembly, such studies can guide future drug discovery efforts related to melanin-associated virulence, resistance to tumor therapy, and production of melanin mimetics under cell-free conditions.


Subject(s)
Catecholamines/metabolism , Cryptococcus neoformans/metabolism , Melanins/metabolism , Cell Wall/metabolism , Cryptococcus neoformans/cytology , Fungal Polysaccharides/metabolism , Indoles/metabolism , Magnetic Resonance Spectroscopy , Melanins/biosynthesis
15.
J Magn Reson ; 161(1): 43-55, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12660110

ABSTRACT

NMR spectroscopy is a relatively insensitive technique and many biomolecular applications operate near the limits of sensitivity and resolution. A particularly challenging example is detection of the quadrupolar nucleus 17O, due to its low natural abundance, large quadrupole couplings, and low gyromagnetic ratio. Yet the chemical shift of 17O spans almost 1000 ppm in organic molecules and it serves as a potentially unique reporter of hydrogen bonding in peptides, nucleic acids, and water, and as a valuable complement to 13C and 15N NMR. Recent developments including the multiple-quantum magic-angle spinning (MQMAS) experiment have enabled the detection of 17O in biological solids, but very long data acquisitions are required to achieve sufficient sensitivity and resolution. Here, we perform nonlinear sampling in the indirect dimension of MQMAS experiments to substantially reduce the total acquisition time and improve sensitivity and resolution. Nonlinear sampling prevents the use of the discrete Fourier transform; instead, we employ maximum entropy (MaxEnt) reconstruction. Nonlinearly sampled MQMAS spectra are shown to provide high resolution and sensitivity in several systems, including lithium sulfate monohydrate (LiSO(4)-H(2)17O) and L-asparagine monohydrate (H(2)17O). The combination of nonlinear sampling and MaxEnt reconstruction promises to make the application of 17O MQMAS practical in a wider range of biological systems.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Oxygen Compounds/chemistry , Anisotropy , Asparagine/chemistry , Fourier Analysis , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...