Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37367104

ABSTRACT

Leveraging sustainable packaging resources in the circular economy framework has gained significant attention in recent years as a means of minimizing waste and mitigating the negative environmental impact of packaging materials. In line with this progression, bio-based hydrogels are being explored for their potential application in a variety of fields including food packaging. Hydrogels are three-dimensional, hydrophilic networks composed of a variety of polymeric materials linked by chemical (covalent bonds) or physical (non-covalent interactions) cross-linking. The unique hydrophilic nature of hydrogels provides a promising solution for food packaging systems, specifically in regulating moisture levels and serving as carriers for bioactive substances, which can greatly affect the shelf life of food products. In essence, the synthesis of cellulose-based hydrogels (CBHs) from cellulose and its derivatives has resulted in hydrogels with several appealing features such as flexibility, water absorption, swelling capacity, biocompatibility, biodegradability, stimuli sensitivity, and cost-effectiveness. Therefore, this review provides an overview of the most recent trends and applications of CBHs in the food packaging sector including CBH sources, processing methods, and crosslinking methods for developing hydrogels through physical, chemical, and polymerization. Finally, the recent advancements in CBHs, which are being utilized as hydrogel films, coatings, and indicators for food packaging applications, are discussed in detail. These developments have great potential in creating sustainable packaging systems.

2.
Crit Rev Food Sci Nutr ; 63(32): 11010-11025, 2023.
Article in English | MEDLINE | ID: mdl-35703070

ABSTRACT

Packaging ensures the safe handling and distribution of fresh and processed food products via diverse supply chains, and has become an indispensable component of the food industry. However, the rapidly expanding use of plastics, especially single-use plastics, as packaging material leads to inadequate waste management, littering, and consequently serious environmental damage, which predominantly affects marine and freshwater sources. Thus, the use of plastics for packaging purposes has become a major public concern and hence a concern among global policymakers. Notably, 26% of the total volume of global plastic production is primarily used for packaging, of which single-use plastics account for 50%, resulting in pollution that may last hundreds of years. This review provides an overview of the manner in which molded pulp products can be utilized to improve sustainability of food packaging applications, by highlighting the manufacturing processes, signifying characteristics features of recyclable molded pulp, and coupling circularity with eco-friendly and safe food product packaging. In this regard, current concepts advocate the implementation of a dynamic and sustainable approach using molded pulp products. This approach encompasses the design and production of eco-friendly packaging, distribution and consumption of packaged products, and collection and recycling of used packaging for subsequent reuse.


Subject(s)
Plastics , Recycling , Food Packaging , Food , Fresh Water
3.
Molecules ; 27(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35566103

ABSTRACT

Intelligent packaging with indicators that provide information about the quality of food products can inform the consumer regarding food safety and reduce food waste. A solid material for a pH-responsive indicator was developed from hydroxypropyl methylcellulose (HPMC) composited with microcrystalline cellulose (MCC). MCC at 5%, 10%, 20%, and 30% w/w was introduced into the HPMC matrix and the physical, barrier, thermal, and optical properties of the HPMC/MCC bio-composite (HMB) films were analyzed. At 5, 10, and 20% MCC, improved mechanical, transparency, and barrier properties were observed, where HMB with 20% of MCC (H20MB) showed the best performance. Therefore, H20MB was selected as the biodegradable solid material for fabricating Roselle anthocyanins (RA) pH sensing indicators. The performance of the RA-H20MB indicator was evaluated by monitoring its response to ammonia vapor and tracking freshness status of chicken tenderloin. The RA-H20MB showed a clear color change with respect to ammonia exposure and quality change of chicken tenderloin; the color changed from red to magenta, purple and green, respectively. These results indicated that RA-H20MB can be used as a biodegradable pH sensing indicator to determine food quality and freshness.


Subject(s)
Hibiscus , Refuse Disposal , Ammonia , Animals , Anthocyanins/chemistry , Cellulose , Chickens , Food , Food Packaging/methods , Hibiscus/chemistry , Hydrogen-Ion Concentration , Hypromellose Derivatives/chemistry
4.
Foods ; 10(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34574221

ABSTRACT

Asparagus (Asparagus officinalis L.) is highly perishable because of its high respiration rate, which continues after harvesting and leads to weight loss, increased hardness, color change, and limited shelf life. Melatonin is an indoleamine that plays an important role in abiotic stress. This study was designed to investigate the effects of melatonin on the quality attributes of green asparagus during cold storage. Green asparagus was soaked in a melatonin solution (50, 100, and 200 µM) for 30 min and then stored at 4 °C under 90% relative humidity for 25 days. The results indicated that melatonin treatment delayed the post-harvest senescence of asparagus and maintained high chlorophyll and vitamin C levels. Melatonin treatment hindered phenylalanine ammonia-lyase and peroxidase activities and reduced lignin content, thereby delaying the increase in firmness. Moreover, melatonin treatment enhanced catalase and superoxide dismutase activities, leading to reduced hydrogen peroxide content. These results indicate that melatonin treatment can be used to maintain the post-harvest quality and prolong the shelf life of green asparagus.

SELECTION OF CITATIONS
SEARCH DETAIL
...