Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(11): e2318857121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38437547

ABSTRACT

Warning coloration and Batesian mimicry are classic examples of Darwinian evolution, but empirical evolutionary patterns are often paradoxical. We test whether foraging costs predict the evolution of striking coloration by integrating genetic and ecological data for aposematic and mimetic snakes (Elapidae and Dipsadidae). Our phylogenetic comparison on a total of 432 species demonstrated that dramatic changes in coloration were well predicted by foraging strategy. Multiple tests consistently indicated that warning coloration and conspicuous mimicry were more likely to evolve in species where foraging costs of conspicuous appearance were relaxed by poor vision of their prey, concealed habitat, or nocturnal activity. Reversion to crypsis was also well predicted by ecology for elapids but not for dipsadids. In contrast to a theoretical prediction and general trends, snakes' conspicuous coloration was correlated with secretive ecology, suggesting that a selection regime underlies evolutionary patterns. We also found evidence that mimicry of inconspicuous models (pitvipers) may have evolved in association with foraging demand for crypsis. These findings demonstrate that foraging is an important factor necessary to understand the evolution, persistence, and diversity of warning coloration and mimicry of snakes, highlighting the significance of additional selective factors in solving the warning coloration paradox.


Subject(s)
Biological Mimicry , Vision, Low , Humans , Phylogeny
2.
J Evol Biol ; 35(2): 333-346, 2022 02.
Article in English | MEDLINE | ID: mdl-34689368

ABSTRACT

Adaptive evolution of vision-related genes has been frequently observed in the process of invasion of new environments in a wide range of animal taxa. The typical example is that of the molecular evolution of rhodopsin associated with habitat changes in aquatic animals. However, few studies have investigated rhodopsin evolution during adaptive radiation across various habitats. In the present study, we examined the link between molecular evolutionary patterns in the rhodopsin gene and macroscopic habitat changes in Gymnogobius species (Gobiidae), which have adaptively radiated to diverse aquatic habitats including the sea, brackish waters, rivers and lakes. Analysis of amino acid substitutions in rhodopsin in the phylogenetic framework revealed convergent substitutions in 4-5 amino acids in three groups (four species), including two spectral tuning amino acid sites known to change rhodopsin's absorption wavelength. Positive selection was detected in the basal branches of each of these three groups, suggesting adaptive molecular convergence of rhodopsin. However, no significant correlation was observed between amino acid substitutions and the species' habitat changes, suggesting molecular adaptation to some unidentified micro-ecological environments. Taken together, these results emphasize the importance of considering not only macroscopic habitats but also micro-ecological environments when elucidating the driving forces of adaptive evolution of the visual system.


Subject(s)
Rhodopsin , Selection, Genetic , Animals , Ecosystem , Evolution, Molecular , Lakes , Phylogeny , Rhodopsin/chemistry , Rhodopsin/genetics , Rhodopsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...