Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 290(2): 1005-19, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25361768

ABSTRACT

Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity. We recently identified endoglycoceramidase-related protein 1 (EGCrP1) as a glucocerebrosidase in C. neoformans and showed that it was involved in the quality control of GlcCer by eliminating immature GlcCer during the synthesis of GlcCer (Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J. Biol. Chem. 287, 368-381). We herein identified and characterized EGCrP2, a homologue of EGCrP1, as the enzyme responsible for sterylglucoside catabolism in C. neoformans. In contrast to EGCrP1, which is specific to GlcCer, EGCrP2 hydrolyzed various ß-glucosides, including GlcCer, cholesteryl-ß-glucoside, ergosteryl-ß-glucoside, sitosteryl-ß-glucoside, and para-nitrophenyl-ß-glucoside, but not α-glucosides or ß-galactosides, under acidic conditions. Disruption of the EGCrP2 gene (egcrp2) resulted in the accumulation of a glycolipid, the structure of which was determined following purification to ergosteryl-3ß-glucoside, a major sterylglucoside in fungi, by mass spectrometric and two-dimensional nuclear magnetic resonance analyses. This glycolipid accumulated in vacuoles and EGCrP2 was detected in vacuole-enriched fraction. These results indicated that EGCrP2 was involved in the catabolism of ergosteryl-ß-glucoside in the vacuoles of C. neoformans. Distinct growth arrest, a dysfunction in cell budding, and an abnormal vacuole morphology were detected in the egcrp2-disrupted mutants, suggesting that EGCrP2 may be a promising target for anti-cryptococcal drugs. EGCrP2, classified into glycohydrolase family 5, is the first steryl-ß-glucosidase identified as well as a missing link in sterylglucoside metabolism in fungi.


Subject(s)
Cellulases/genetics , Ceramides/metabolism , Cryptococcosis/enzymology , Cryptococcus neoformans/genetics , Fungal Proteins/genetics , Glycoside Hydrolases/metabolism , Cellulases/metabolism , Ceramides/chemistry , Cryptococcosis/pathology , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/pathogenicity , Glucosylceramides/metabolism , Glycolipids/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...