Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(9): 6555-6563, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38657225

ABSTRACT

Atom transfer radical addition (ATRA) reactions are crucial for the dual functionalization of unsaturated hydrocarbons. Radical generation, pivotal in ATRA, has seen advancements from thermal to photochemical methods. Recent focus on halogen-bonding-based radical generation, including our group's innovative photochemical approach, offers cost-effective alternatives to transition-metal-dependent photocatalysts. This eliminates the need for high-energy UV light, enhancing the efficiency with noncovalent interactions.

2.
J Org Chem ; 88(9): 6176-6181, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37083371

ABSTRACT

This study investigates the photoinduced C-X borylation reaction of aryl halides by forming a halogen-bonding (XB) complex using 2-naphthol as an XB acceptor. The method is chemoselective and broadly functional group tolerant and provides concise access to corresponding boronate esters. Mechanistic studies reveal that forming the XB complex between aryl halide and naphthol acts as an electron donor-acceptor complex to furnish aryl radicals through photoinduced electron transfer.

3.
Org Lett ; 25(11): 1856-1861, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36866934

ABSTRACT

A method for the catalytic regioselective synthesis of C3-substituted dihydrobenzofurans (DHBs) via [2 + 2] photocycloaddition of alkene and p-benzoquinone is developed. This method realizes the rapid synthesis of DHBs with readily available substrates and simple reaction conditions by using Lewis acid B(C6F5)3 and Lewis base P(o-tol)3 as a catalyst in combination with the classical Paternò-Büchi reaction.

4.
J Nat Med ; 77(2): 315-326, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36607539

ABSTRACT

We previously synthesized two retinoid X receptor (RXR) agonists, 4'-hydroxy-3'-propyl-[1,1'-biphenyl]-3-propanoic acid ethyl ester (4'OHE) and 6-hydroxy-3'-propyl-[1,1'-biphenyl]-3-propanoic acid ethyl ester (6OHE), based on the structure of magnaldehyde B, a natural product obtained from Magnolia obovata. 4'OHE and 6OHE exhibited different selectivities for peroxisome proliferator-activated receptor (PPAR)/RXR heterodimers. To examine the regulatory effects of these compounds in adipogenesis, 3T3-L1 mouse preadipocytes were treated with a differentiation cocktail with or without test compounds to induce differentiation, and subsequently treated with test compounds in insulin-containing medium every alternate day. Lipid droplets were stained with Oil Red O to examine lipid accumulation. In addition, adipogenesis-related gene expression was measured using RT-qPCR and immunoblotting. The results showed that a PPARγ agonist, 4'OHE, which exerts agonistic effects on PPARγ and RXRα, enhanced adipogenesis similar to rosiglitazone. However, unlike GW501516, a PPARδ agonist, 6OHE and its hydrolysis product (6OHA), which exert agonistic effects on PPARδ and RXRα, suppressed adipogenesis. In a manner similar to 6OHE and 6OHA, bexarotene, an RXR agonist, suppressed adipocyte differentiation, and its anti-adipogenic effect was reversed by an RXR antagonist. Furthermore, 6OHA and bexarotene inhibited the increase in Pparγ2 and Cebpa mRNA levels 2 days after the induction of differentiation. We demonstrated the adipogenic effect of 4'OHE and anti-adipogenic effects of 6OHE and 6OHA in 3T3-L1 cells. Previously, RXR agonists have been reported to positively regulate the differentiation of mesenchymal stem cells into adipocytes, but our current data showed that they inhibited the differentiation of preadipocytes, at least 3T3-L1 cells, into adipocytes.


Subject(s)
Lignans , PPAR delta , Animals , Mice , Adipogenesis , PPAR gamma/pharmacology , Retinoid X Receptors/pharmacology , 3T3-L1 Cells , Propionates/pharmacology , Bexarotene/pharmacology , PPAR delta/pharmacology , Cell Differentiation , Lignans/pharmacology
5.
Chem Commun (Camb) ; 59(4): 450-453, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36519388

ABSTRACT

A late-stage diversification strategy for synthesizing ynamides has been developed. This strategy was enabled by the copper-catalyzed direct electrophilic diynylation of sulfonamides with a novel triisopropylsilyl diynyl benziodoxolone, deprotection, and the late-stage chemoselective copper-catalyzed azide-alkyne cycloaddition sequence, which yields various complex molecule-derived ynamides with pyrene, amino acid, nucleoside, and N-acetylglucosamine as substituents.


Subject(s)
Azides , Copper , Azides/chemistry , Copper/chemistry , Alkynes/chemistry , Cycloaddition Reaction , Catalysis
6.
Org Lett ; 24(48): 8859-8863, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36442074

ABSTRACT

The moiety of 4-imidazolidinone is an important structural motif in organic synthesis and medicinal chemistry. We present the synthesis of 4-imidazolidinones from various diamides with ethynyl benziodoxolones through double Michael-type addition, which is an unprecedented reaction mode for hypervalent alkynyl iodine compounds. cis-2,5-Disubstituted 4-imidazolidinones were diastereoselectively synthesized from amino acid derived diamides. Having derivatized the 4-imidazolidinones, several control experiments and density functional theory calculations were conducted to realize mechanistic insight.

7.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430833

ABSTRACT

Prostate cancer (PC) represents the most common cancer disease in men. Since high levels of androgens increase the risk of PC, androgen deprivation therapy is the primary treatment; however this leads to castration-resistant PC (CRPC) with a poor prognosis. The progression to CRPC involves ectopic androgen production in the adrenal glands and abnormal activation of androgen signaling due to mutations and/or amplification of the androgen receptor (AR) as well as activation of androgen-independent proliferative pathways. Recent studies have shown that adrenal-derived 11-oxygenated androgens (11-ketotestosterone and 11-ketodihydrotestosterone) with potencies equivalent to those of traditional androgens (testosterone and dihydrotestosterone) are biomarkers of CRPC. Additionally, dehydrogenase/reductase SDR family member 11 (DHRS11) has been reported to be a 17ß-hydroxysteroid dehydrogenase that catalyzes the production of the 11-oxygenated and traditional androgens. This study was conducted to evaluate the pathophysiological roles of DHRS11 in PC using three LNCaP, C4-2 and 22Rv1 cell lines. DHRS11 silencing and inhibition resulted in suppression of the androgen-induced expression of AR downstream genes and decreases in the expression of nuclear AR and the proliferation marker Ki67, suggesting that DHRS11 is involved in androgen-dependent PC cell proliferation. We found that 5,7-dihydroxy-8-methyl-2-[2-(4-hydroxyphenyl)ethenyl]-4H-1-benzopyran-4-one (Kobochromone A, KC-A), an ingredient in the flowers of Carex kobomugi, is a novel potent DHRS11 inhibitor (IC50 = 0.35 µM). Additionally, KC-A itself decreased the AR expression in PC cells. Therefore, KC-A suppresses the androgen signaling in PC cells through both DHRS11 inhibition and AR downregulation. Furthermore, KC-A enhanced the anticancer activity of abiraterone, a CRPC drug, suggesting that it may be a potential candidate for the development of drugs for the prevention and treatment of CRPC.


Subject(s)
Carex Plant , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Androgens/metabolism , Polyphenols/therapeutic use , Carex Plant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Androgen Antagonists/therapeutic use , Down-Regulation , Cell Line, Tumor , 17-Hydroxysteroid Dehydrogenases/genetics
8.
Photochem Photobiol Sci ; 21(5): 813-818, 2022 May.
Article in English | MEDLINE | ID: mdl-35048305

ABSTRACT

Carbenes are important and highly reactive intermediates for the synthesis of various complex molecules. They are now an indispensable chemical species in organic chemistry and are used frequently to synthesize complex compounds in drug discovery chemistry. In general, carbenes are synthesized by a combination of transition metal catalysts and diazo compounds or by the decomposition reactions of diazo compounds. This paper reports the development of the visible light for the photochemical generation of carbenes from a novel C,Se-selenonium ylide. Overall, this photochemical carbene generation method using C,Se-selenonium ylide does not require a catalyst, is simple to perform, and enables highly efficient cyclopropanation reactions with alkenes.


Subject(s)
Azo Compounds , Catalysis
9.
Molecules ; 26(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34833874

ABSTRACT

We have developed a photochemical ATRA/ATRC reaction that is mediated by halogen bonding interactions. This reaction is caused by the reaction of malonic acid ester derivatives containing bromine or iodine with unsaturated compounds such as alkenes and alkynes in the presence of diisopropylethylamine under visible light irradiation. As a result of various control experiments, it was found that the formation of complexes between amines and halogens by halogen-bonding interaction occurs in the reaction system, followed by the cleavage of the carbon-halogen bonds by visible light, resulting in the formation of carbon radicals. In this reaction, a variety of substrates can be used, and the products, cyclopentenes and cyclopentanes, were obtained by intermolecular addition and intramolecular cyclization.

10.
Chem Pharm Bull (Tokyo) ; 69(8): 796-801, 2021.
Article in English | MEDLINE | ID: mdl-34334524

ABSTRACT

The irradiation of halogen-bonded complexes with light leads to the homolysis of carbon-halogen bonds and the formation of the corresponding carbon radical species. However, the only methodology reported for these halogen-bonding complexes is using CBr4 as the halogen-bond donor and its applicability is of great interest. In this study, the atom transfer radical addition (ATRA) reaction of olefins using bromomalonates as halogen-bonding donors was developed. Using 4-phenylpyridine as the halogen-bonding acceptor, the desired reaction proceeded well under external irradiation of 380 nm light to furnish the corresponding ATRA reaction product. The ATRA reaction was effective in generating the corresponding products for a variety of olefins. Furthermore, the ATRA reaction was applicable to bulky ketones, substrates, and malonate esters. The intermediates of the reaction were identified and a plausible reaction mechanism was proposed.


Subject(s)
Alkenes/chemistry , Hydrocarbons, Brominated/chemistry , Free Radicals/chemical synthesis , Free Radicals/chemistry , Molecular Structure , Photochemical Processes
11.
J Org Chem ; 86(6): 4699-4713, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33719425

ABSTRACT

Ynamides are versatile building blocks in organic synthesis. However, the synthesis of amino acid-derived ynamides is difficult but in high demand. Herein, we disclose the copper-catalyzed Csp-N coupling of sulfonamide, including amino acid and peptide derivatives, to give ynamides by using alkynyl benziodoxolones with broad functional group tolerance under mild reaction conditions. The electron-rich bipyridine as a ligand and ethanol as solvent were used for the success of this reaction. The usefulness of the obtained amino acid-derived ynamide as building block was showcased by further derivatization to unique amino acid derivatives. A control experiment to elucidate the mechanistic insight was also described.


Subject(s)
Amino Acids , Copper , Catalysis , Ligands , Sulfonamides
12.
Org Biomol Chem ; 19(11): 2442-2447, 2021 03 21.
Article in English | MEDLINE | ID: mdl-33666207

ABSTRACT

The stereoselective synthesis of cis-ß-N-alkoxyamidevinyl benziodoxolones (cis-ß-N-RO-amide-VBXs) from O-alkyl hydroxamic acids in the presence of an ethynyl benziodoxolone-acetonitrile complex (EBX-MeCN) is reported herein. The reaction was performed under mild conditions including an aqueous solvent, a mild base, and room temperature. The reaction tolerated various O-alkyl hydroxamic acids derived from carboxylic acids, such as amino acids, pharmaceuticals, and natural products. Vinyl dideuterated cis-ß-N-MeO-amide-VBXs were also synthesized using deuterium oxide as the deuterium source. Valine-derived cis-ß-N-MeO-amide-VBX was stereospecifically derivatized to hydroxamic acid-derived cis-enamides without the loss of stereoselectivity or reduction in the deuterium/hydrogen ratio.

13.
Chem Asian J ; 15(23): 4000-4004, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33058543

ABSTRACT

The stereoselective synthesis of cis-ß-phenoxyvinyl benziodoxolones (cis-ß-phenol-VBXs) from an ethynyl benziodoxolone-acetonitrile complex (EBX-MeCN) and various phenols is reported herein. The reaction tolerates different phenol derivatives, including complex natural products, and can be conducted under mild conditions. The synthesis was performed in an aqueous solvent in the absence and presence of a catalytic amount of a base. Selectively mono- and di-deuterated cis-ß-phenol-VBXs were also prepared. cis-ß-Phenol-VBXs were stereospecifically derivatized to cis-alkynylvinyl ethers and cis-iodovinyl ethers without loss of stereoselectivity or reduction in the deuterium/hydrogen ratio.

14.
J Org Chem ; 85(16): 10709-10718, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32806099

ABSTRACT

A novel three-component γ-iminolactonization reaction was developed, which relied on the C-C/C-O bond-forming bifunctionalization of olefins using molecular iodine and visible light. This strategy did not require any (heavy) metal reagents for double-bond activation because molecular iodine acted as a rare-metal-alternative reagent through visible light irradiation. In addition, the preactivation of amines and other substrates is not required. The mechanistic investigation revealed that the generated iodine radicals under visible light irradiation reacted with alkenes to form a highly reactive intermediate; then, the three-component reaction of diiodide, malonate, and amine furnished iminolactone. Of note, the developed reaction is simple and realized the diversity-oriented synthesis innovative methodology of γ-iminolactone derivatives in drug discovery chemistry.

15.
Int J Mol Sci ; 21(13)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610684

ABSTRACT

The excessive intake of phosphate (Pi), or chronic kidney disease (CKD), can cause hyperphosphatemia and eventually lead to ectopic calcification, resulting in cerebrovascular diseases. It has been reported that reactive oxygen species (ROS), induced by high concentrations of Pi loading, play a key role in vascular calcification. Therefore, ROS suppression may be a useful treatment strategy for vascular calcification. 12AC3O is a newly synthesized gem-dihydroperoxide (DHP) that has potent antioxidant effects. In the present study, we investigated whether 12AC3O inhibited vascular calcification via its antioxidative capacity. To examine whether 12AC3O prevents vascular calcification under high Pi conditions, we performed Alizarin red and von Kossa staining, using the mouse aortic smooth muscle cell line p53LMAco1. Additionally, the effect of 12AC3O against oxidative stress, induced by high concentrations of Pi loading, was investigated using redox- sensitive dyes. Further, the direct trapping effect of 12AC3O on reactive oxygen species (ROS) was investigated by ESR analysis. Although high concentrations of Pi loading exacerbated vascular smooth muscle calcification, calcium deposition was suppressed by the treatment of both antioxidants and 12AC3O, suggesting that the suppression of ROS may be a candidate therapeutic approach for treating vascular calcification induced by high concentrations of Pi loading. Importantly, 12AC3O also attenuated oxidative stress. Furthermore, 12AC3O directly trapped superoxide anion and hydroxyl radical. These results suggest that ROS are closely involved in high concentrations of Pi-induced vascular calcification and that 12AC3O inhibits vascular calcification by directly trapping ROS.


Subject(s)
Antioxidants/pharmacology , Calcification, Physiologic/drug effects , Myocytes, Smooth Muscle/metabolism , Peroxides/pharmacology , Animals , Cell Line , Cells, Cultured , Mice , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/drug effects , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Vascular Calcification/drug therapy , Vascular Calcification/metabolism
16.
J Org Chem ; 85(16): 10574-10583, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32666790

ABSTRACT

Although organic-based photocatalysts provide an inexpensive, environmentally friendly alternative, many are incapable of absorption within the visible wavelength range; this ultimately influences their effectiveness. Photocatalytic reactions usually proceed via single electron transfer (SET) or energy transfer (ET) processes from the photoexcited molecules to the various substrates. In our study, the carbohalogenation of olefins was accomplished by combining CBr4 and 4-Ph-pyridine under irradiation. The atom transfer radical addition reaction of olefins was catalyzed by an in situ-formed photocatalyst via halogen bonding to afford a variety of products in moderate to good yields. Essential to the reaction is the formation of a CT complex with the haloalkene, which triggers charge separation processes and, ultimately, leads to the formation of the C-centered radical. While taking advantage of relatively inexpensive, readily available, and environmentally friendly reagents, the indirect activation of the substrate via the photoexcited catalyst paves the way for more efficient routes, especially for otherwise challenging chemical syntheses.

17.
ACS Chem Biol ; 15(6): 1526-1534, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32374156

ABSTRACT

A known natural product, magnaldehyde B, was identified as an agonist of retinoid X receptor (RXR) α. Magnaldehyde B was isolated from Magnolia obovata (Magnoliaceae) and synthesized along with more potent analogs for screening of their RXRα agonistic activities. Structural optimization of magnaldehyde B resulted in the development of a candidate molecule that displayed a 440-fold increase in potency. Receptor-ligand docking simulations indicated that this molecule has the highest affinity with the ligand binding domain of RXRα among the analogs synthesized in this study. Furthermore, the selective activation of the peroxisome proliferator-activated receptor (PPAR) δ-RXR heterodimer with a stronger efficacy compared to those of PPARα-RXR and PPARγ-RXR was achieved in luciferase reporter assays using the PPAR response element driven reporter (PPRE-Luc). The PPARδ activity of the molecule was significantly inhibited by the antagonists of both RXR and PPARδ, whereas the activity of GW501516 was not affected by the RXR antagonist. Furthermore, the molecule exhibited a particularly weak PPARδ agonistic activity in reporter gene assays using the Gal4 hybrid system. The obtained data therefore suggest that the weak PPARδ agonistic activity of the optimized molecule is synergistically enhanced by its own RXR agonistic activity, indicating the potent agonistic activity of the PPARδ-RXR heterodimer.


Subject(s)
Biological Products/chemistry , Biological Products/pharmacology , Lignans/chemistry , Lignans/pharmacology , PPAR gamma/agonists , Retinoid X Receptors/agonists , Dimerization , Drug Discovery , Ligands , Molecular Docking Simulation , PPAR alpha/agonists , PPAR alpha/metabolism , PPAR gamma/metabolism , Protein Binding , Retinoid X Receptors/metabolism , Structure-Activity Relationship
18.
Org Lett ; 21(23): 9769-9773, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31742414

ABSTRACT

The synthesis of cis-ß-amidevinyl benziodoxolones from the ethynyl benziodoxolone-chloroform complex and sulfonamides is reported. Evidence indicates that highly reactive unsubstituted ethynyl benziodoxolone undergoes Michael addition of sulfonamides, including sterically demanding acyclic amino acid derivatives. The synthesis of selectively deuterated cis-ß-amidevinyl benziodoxolones and investigation of ethynyl-λ3-iodane reactivity are also described.

19.
Free Radic Res ; 53(11-12): 1051-1059, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31575304

ABSTRACT

Matrix metalloproteinases (MMPs), zinc-containing proteinases, play a critical role in tumour progression by degrading extracellular matrix components. MMP2 and MMP9 are secreted from tumour-associated macrophages as well as tumour cells and have been implicated in the formation of the tumour microenvironment. Therefore, the inhibition of these MMPs may suppress tumour progression and metastasis. 4-Hydroperoxy-2-decenoic acid ethyl ester (HPO-DAEE) is known to cause apoptosis in the human lung cancer cell line A549 by inducing endoplasmic reticulum (ER) stress. However, the effects of HPO-DAEE on tumour progression remain unclear. HPO-DAEE pre-treatment significantly suppressed phorbol 12-myristate 13-acetate (TPA)-triggered MMP activation in human monocytic THP-1 cells. It also enhanced the expression of haem oxygenase-1, an antioxidant enzyme, and suppressed the TPA-triggered intracellular accumulation of reactive oxygen species (ROS). Furthermore, HPO-DAEE suppressed transforming growth factor-ß1-triggered human prostate cancer PC3 cell migration and this was accompanied by the inhibition of MMP expression and activities. The present results indicate that HPO-DAEE may exert inhibitory effects on tumour progression by suppressing MMP expression and activities.


Subject(s)
Antineoplastic Agents/pharmacology , Esters/pharmacology , Fatty Acids, Monounsaturated/pharmacology , Fatty Acids/pharmacology , Matrix Metalloproteinases/biosynthesis , Phorbol Esters/pharmacology , Prostatic Neoplasms/drug therapy , Transforming Growth Factor beta1/antagonists & inhibitors , Antineoplastic Agents/chemistry , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Esters/chemistry , Fatty Acids/chemistry , Fatty Acids, Monounsaturated/chemistry , Humans , Male , Matrix Metalloproteinases/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Transforming Growth Factor beta1/metabolism
20.
ACS Omega ; 4(3): 4856-4870, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-31459670

ABSTRACT

This study aims to develop an intermolecular lactonization reaction of alkenes with carbonyls mediated by visible light and molecular iodine. The one-step reaction involved the carboesterification of alkenes to produce the corresponding lactones in moderate to good yield. It was also revealed that it is possible to control the diastereoselectivity of the reaction by altering the base used and the reaction conditions. When water was added as a solvent, the reaction resulted in the formation of lactones with trans-selectivity. A mechanistic investigation was undertaken and it was found that the reaction requires the generation of an iodine radical from molecular iodine, driven by visible light irradiation, and proceeds via the formation of an iodine radical alkene adduct. The proposed reaction is an example of a rare-metal free intermolecular addition cyclization reaction, which is an environment-friendly chemical process that only uses molecular iodine. In addition, since diastereoselectivity was observed without the use of any specific reagents, the developed methodology is an example of a novel stereoselective transformation using only cost-effective reagents.

SELECTION OF CITATIONS
SEARCH DETAIL
...