Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Front Neurol ; 14: 1268411, 2023.
Article in English | MEDLINE | ID: mdl-38020654

ABSTRACT

Introduction: Multiple sclerosis (MS) affects the cerebral cortex, inducing cortical atrophy and neuronal and synaptic pathology. Despite the fact that women are more susceptible to getting MS, men with MS have worse disability progression. Here, sex differences in neurodegenerative mechanisms are determined in the cerebral cortex using the MS model, chronic experimental autoimmune encephalomyelitis (EAE). Methods: Neurons from cerebral cortex tissues of chronic EAE, as well as age-matched healthy control, male and female mice underwent RNA sequencing and gene expression analyses using RiboTag technology. The morphology of mitochondria in neurons of cerebral cortex was assessed using Thy1-CFP-MitoS mice. Oxygen consumption rates were determined using mitochondrial respirometry assays from intact as well as permeabilized synaptosomes. Results: RNA sequencing of neurons in cerebral cortex during chronic EAE in C57BL/6 mice showed robust differential gene expression in male EAE compared to male healthy controls. In contrast, there were few differences in female EAE compared to female healthy controls. The most enriched differential gene expression pathways in male mice during EAE were mitochondrial dysfunction and oxidative phosphorylation. Mitochondrial morphology in neurons showed significant abnormalities in the cerebral cortex of EAE males, but not EAE females. Regarding function, synaptosomes isolated from cerebral cortex of male, but not female, EAE mice demonstrated significantly decreased oxygen consumption rates during respirometry assays. Discussion: Cortical neuronal transcriptomics, mitochondrial morphology, and functional respirometry assays in synaptosomes revealed worse neurodegeneration in male EAE mice. This is consistent with worse neurodegeneration in MS men and reveals a model and a target to develop treatments to prevent cortical neurodegeneration and mitigate disability progression in MS men.

2.
Nat Commun ; 14(1): 6044, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37758709

ABSTRACT

Menopause is associated with cognitive deficits and brain atrophy, but the brain region and cell-specific mechanisms are not fully understood. Here, we identify a sex hormone by age interaction whereby loss of ovarian hormones in female mice at midlife, but not young age, induced hippocampal-dependent cognitive impairment, dorsal hippocampal atrophy, and astrocyte and microglia activation with synaptic loss. Selective deletion of estrogen receptor beta (ERß) in astrocytes, but not neurons, in gonadally intact female mice induced the same brain effects. RNA sequencing and pathway analyses of gene expression in hippocampal astrocytes from midlife female astrocyte-ERß conditional knock out (cKO) mice revealed Gluconeogenesis I and Glycolysis I as the most differentially expressed pathways. Enolase 1 gene expression was increased in hippocampi from both astrocyte-ERß cKO female mice at midlife and from postmenopausal women. Gain of function studies showed that ERß ligand treatment of midlife female mice reversed dorsal hippocampal neuropathology.


Subject(s)
Astrocytes , Estrogen Receptor beta , Animals , Female , Mice , Astrocytes/metabolism , Brain/metabolism , Cognition , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Neurons/metabolism
3.
Lab Invest ; 103(8): 100189, 2023 08.
Article in English | MEDLINE | ID: mdl-37245852

ABSTRACT

In multiple sclerosis (MS), demyelination occurs in the cerebral cortex, and cerebral cortex atrophy correlates with clinical disabilities. Treatments are needed in MS to induce remyelination. Pregnancy is protective in MS. Estriol is made by the fetoplacental unit, and maternal serum estriol levels temporally align with fetal myelination. Here, we determined the effect of estriol treatment on the cerebral cortex in the preclinical model of MS, experimental autoimmune encephalomyelitis (EAE). Estriol treatment initiated after disease onset decreased cerebral cortex atrophy. Neuropathology of the cerebral cortex showed increased cholesterol synthesis proteins in oligodendrocytes, more newly formed remyelinating oligodendrocytes, and increased myelin in estriol-treated EAE mice. Estriol treatment also decreased the loss of cortical layer V pyramidal neurons and their apical dendrites and preserved synapses. Together, estriol treatment after EAE onset reduced atrophy and was neuroprotective in the cerebral cortex.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Neurodegenerative Diseases , Pregnancy , Female , Mice , Animals , Neuroprotection , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Estriol/pharmacology , Estriol/therapeutic use , Cerebral Cortex/metabolism , Atrophy/drug therapy , Atrophy/pathology , Mice, Inbred C57BL
4.
Ann Clin Transl Neurol ; 9(8): 1316-1320, 2022 08.
Article in English | MEDLINE | ID: mdl-35770318

ABSTRACT

Estrogens have neuroprotective actions depending on estrogen type, dose, and timing in both preclinical models and in women during health and disease. Serum neurofilament light chain is a putative biomarker of neurodegeneration in multiple sclerosis, aging, and other neurodegenerative diseases. Here, oral treatment with an estrogen unique to pregnancy (estriol) using an 8 mg dose to induce a mid-pregnancy blood estriol level reduced serum neurofilament light chain in nonpregnant MS women at mean age of 37 years. This is consistent with estriol-mediated protection from neuro-axonal injury and supports the use of serum neurofilament light chain as a biomarker in MS.


Subject(s)
Multiple Sclerosis , Adult , Biomarkers , Estriol/therapeutic use , Estrogens/therapeutic use , Female , Humans , Intermediate Filaments , Multiple Sclerosis/drug therapy , Pregnancy
5.
Mult Scler ; 26(3): 294-303, 2020 03.
Article in English | MEDLINE | ID: mdl-30843756

ABSTRACT

BACKGROUND: Gray matter (GM) atrophy in brain is one of the best predictors of long-term disability in multiple sclerosis (MS), and recent findings have revealed that localized GM atrophy is associated with clinical disabilities. GM atrophy associated with each disability mapped to a distinct brain region, revealing a disability-specific atlas (DSA) of GM loss. OBJECTIVE: To uncover the mechanisms underlying the development of localized GM atrophy. METHODS: We used voxel-based morphometry (VBM) to evaluate localized GM atrophy and Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY) to evaluate specific pathologies in mice with experimental autoimmune encephalomyelitis (EAE). RESULTS: We observed extensive GM atrophy throughout the cerebral cortex, with additional foci in the thalamus and caudoputamen, in mice with EAE compared to normal controls. Next, we generated pathology-specific atlases (PSAs), voxelwise mappings of the correlation between specific pathologies and localized GM atrophy. Interestingly, axonal damage (end-bulbs and ovoids) in the spinal cord strongly correlated with GM atrophy in the sensorimotor cortex of the brain. CONCLUSION: The combination of VBM with CLARITY in EAE can localize GM atrophy in brain that is associated with a specific pathology in spinal cord, revealing a PSA of GM loss.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/pathology , Gray Matter/pathology , Multiple Sclerosis/pathology , Sensorimotor Cortex/pathology , Spinal Cord/pathology , Animals , Atrophy/pathology , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Female , Gray Matter/diagnostic imaging , Hydrogels , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Multiple Sclerosis/diagnostic imaging , Sensorimotor Cortex/diagnostic imaging , Spinal Cord/diagnostic imaging
6.
Proc Natl Acad Sci U S A ; 116(52): 26779-26787, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31822606

ABSTRACT

Many autoimmune diseases are more frequent in females than in males in humans and their mouse models, and sex differences in immune responses have been shown. Despite extensive studies of sex hormones, mechanisms underlying these sex differences remain unclear. Here, we focused on sex chromosomes using the "four core genotypes" model in C57BL/6 mice and discovered that the transcriptomes of both autoantigen and anti-CD3/CD28 stimulated CD4+ T lymphocytes showed higher expression of a cluster of 5 X genes when derived from XY as compared to XX mice. We next determined if higher expression of an X gene in XY compared to XX could be due to parent-of-origin differences in DNA methylation of the X chromosome. We found a global increase in DNA methylation on the X chromosome of paternal as compared to maternal origin. Since DNA methylation usually suppresses gene expression, this result was consistent with higher expression of X genes in XY cells because XY cells always express from the maternal X chromosome. In addition, gene expression analysis of F1 hybrid mice from CAST × FVB reciprocal crosses showed preferential gene expression from the maternal X compared to paternal X chromosome, revealing that these parent-of-origin effects are not strain-specific. SJL mice also showed a parent-of-origin effect on DNA methylation and X gene expression; however, which X genes were affected differed from those in C57BL/6. Together, this demonstrates how parent-of-origin differences in DNA methylation of the X chromosome can lead to sex differences in gene expression during immune responses.

7.
J Clin Invest ; 129(9): 3852-3863, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31403472

ABSTRACT

Multiple sclerosis (MS) is a putative T cell-mediated autoimmune disease. As with many autoimmune diseases, females are more susceptible than males. Sexual dimorphisms may be due to differences in sex hormones, sex chromosomes, or both. Regarding sex chromosome genes, a small percentage of X chromosome genes escape X inactivation and have higher expression in females (XX) compared with males (XY). Here, high-throughput gene expression analysis in CD4+ T cells showed that the top sexually dimorphic gene was Kdm6a, a histone demethylase on the X chromosome. There was higher expression of Kdm6a in females compared with males in humans and mice, and the four core genotypes (FCG) mouse model showed higher expression in XX compared with XY. Deletion of Kdm6a in CD4+ T cells ameliorated clinical disease and reduced neuropathology in the classic CD4+ T cell-mediated autoimmune disease experimental autoimmune encephalomyelitis (EAE). Global transcriptome analysis in CD4+ T cells from EAE mice with a specific deletion of Kdm6a showed upregulation of Th2 and Th1 activation pathways and downregulation of neuroinflammation signaling pathways. Together, these data demonstrate that the X escapee Kdm6a regulates multiple immune response genes, providing a mechanism for sex differences in autoimmune disease susceptibility.


Subject(s)
Autoimmunity/immunology , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Genes, X-Linked , Histone Demethylases/genetics , Animals , CD4-Positive T-Lymphocytes/immunology , Disease Models, Animal , Female , Gene Deletion , Gene Expression Profiling , Genotype , Histones/metabolism , Humans , Hyaluronan Receptors/metabolism , Inflammation , Male , Mice , Mice, Knockout , Multiple Sclerosis/metabolism , Phenotype , Th1 Cells/metabolism , Th2 Cells/metabolism , Transcriptome
8.
Sci Rep ; 9(1): 10010, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31292459

ABSTRACT

Multiple sclerosis (MS) is a neuroinflammatory multifocal disorder. Optic neuritis is common in MS and leads to visual disability. No current treatments repair this damage. Discerning gene expression changes within specific cell types in optic nerve (ON) may suggest new treatment targets for visual disability in MS. Astrocytes are pivotal regulators of neuroinflammation, playing either detrimental or beneficial roles. Here, we used RiboTag technology to characterize the astrocyte-specific transcriptome in ON in the experimental autoimmune encephalomyelitis (EAE) model of MS. RNA sequencing analysis showed the Complement Cascade and Cholesterol Biosynthesis Pathways as the most enriched and de-enriched pathways, respectively, in ON astrocytes in EAE. Expression of complement component 3 (C3) was confirmed to be increased in ON astrocytes at the protein level during EAE. A bigger increase in C3 expressing ON astrocytes was found in EAE females versus healthy females, as compared to that in EAE males versus healthy males. Also, there was worse retinal ganglion cell (RGC) and axonal loss in EAE females. Regression analyses showed a negative correlation between C3 expressing astrocytes and RGC density. This cell-specific and sex-specific investigation of the optic nerve provides targets for the development of therapeutic strategies tailored for optic neuritis in MS.


Subject(s)
Astrocytes/metabolism , Complement C3/genetics , Complement C3/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Gene Expression Profiling/methods , Optic Neuritis/genetics , Animals , Case-Control Studies , Complement Activation , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Gene Regulatory Networks , Male , Mice , Optic Neuritis/metabolism , Organ Specificity , Sequence Analysis, RNA , Sex Characteristics , Up-Regulation
9.
J Hum Evol ; 131: 129-138, 2019 06.
Article in English | MEDLINE | ID: mdl-31182198

ABSTRACT

This study reports the first observed case of wild chimpanzees (Pan troglodytes) obtaining animal prey freshly killed by a sympatric leopard (Panthera pardus) and scavenging it with the leopard still nearby. This observation has important implications for the emergence of confrontational scavenging, which may have played a significant role in human evolution. Many scholars agree that eating meat became important during human evolution, and hominins first obtained meat by scavenging. However, it is debatable whether scavenging behavior was "passive" or "confrontational (power)." The latter is more dangerous, as it requires facing the original predator, and it is thus considered to have been important for the evolution of several human traits, including cooperation and language. Chimpanzees do scavenge meat, although rarely, but no previous evidence of confrontational scavenging has hitherto emerged. Thus, it was assumed that they are averse to confrontation with even leopard-sized predators. However, in the observed case the chimpanzees frequently emitted waa barks, which indicated that they were aware of the leopard's presence but they nevertheless continued to eat the scavenged meat. In addition, we compiled and reviewed 49 cases of chimpanzee encounters with animal carcasses in the Mahale Mountains of Tanzania in 1980-2017. Chimpanzees scavenged meat in 36.7% of these cases, and tended to eat the meat when it was fresh or if the animal species was usually hunted by chimpanzees. However, no evidence indicated that carcasses were avoided when leopard involvement was likely. These results suggest that chimpanzee-sized hominins could potentially confront and deprive leopard-size carnivores of meat.


Subject(s)
Diet , Feeding Behavior , Pan troglodytes , Panthera , Predatory Behavior , Animals , Female , Food Chain , Male , Tanzania
10.
Proc Natl Acad Sci U S A ; 116(20): 10130-10139, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31040210

ABSTRACT

Regional differences in neurons, astrocytes, oligodendrocytes, and microglia exist in the brain during health, and regional differences in the transcriptome may occur for each cell type during neurodegeneration. Multiple sclerosis (MS) is multifocal, and regional differences in the astrocyte transcriptome occur in experimental autoimmune encephalomyelitis (EAE), an MS model. MS and EAE are characterized by inflammation, demyelination, and axonal damage, with minimal remyelination. Here, RNA-sequencing analysis of MS tissues from six brain regions suggested a focus on oligodendrocyte lineage cells (OLCs) in corpus callosum. Olig1-RiboTag mice were used to determine the translatome of OLCs in vivo in corpus callosum during the remyelination phase of a chronic cuprizone model with axonal damage. Cholesterol-synthesis gene pathways dominated as the top up-regulated pathways in OLCs during remyelination. In EAE, remyelination was induced with estrogen receptor-ß (ERß) ligand treatment, and up-regulation of cholesterol-synthesis gene expression was again observed in OLCs. ERß-ligand treatment in the cuprizone model further increased cholesterol synthesis gene expression and enhanced remyelination. Conditional KOs of ERß in OLCs demonstrated that increased cholesterol-synthesis gene expression in OLCs was mediated by direct effects in both models. To address this direct effect, ChIP assays showed binding of ERß to the putative estrogen-response element of a key cholesterol-synthesis gene (Fdps). As fetal OLCs are exposed in utero to high levels of estrogens in maternal blood, we discuss how remyelinating properties of estrogen treatment in adults during injury may recapitulate normal developmental myelination through targeting cholesterol homeostasis in OLCs.


Subject(s)
Cholesterol/biosynthesis , Encephalomyelitis, Autoimmune, Experimental/metabolism , Multiple Sclerosis/metabolism , Oligodendroglia/metabolism , Remyelination , Animals , Case-Control Studies , Cuprizone , Estrogen Receptor beta/metabolism , Female , Gene Expression , Homeostasis , Humans , Mice, Inbred C57BL , Middle Aged , Sequence Analysis, RNA
11.
Proc Natl Acad Sci U S A ; 115(2): E302-E309, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29279367

ABSTRACT

Changes in gene expression that occur across the central nervous system (CNS) during neurological diseases do not address the heterogeneity of cell types from one CNS region to another and are complicated by alterations in cellular composition during disease. Multiple sclerosis (MS) is multifocal by definition. Here, a cell-specific and region-specific transcriptomics approach was used to determine gene expression changes in astrocytes in the most widely used MS model, experimental autoimmune encephalomyelitis (EAE). Astrocyte-specific RNAs from various neuroanatomic regions were attained using RiboTag technology. Sequencing and bioinformatics analyses showed that EAE-induced gene expression changes differed between neuroanatomic regions when comparing astrocytes from spinal cord, cerebellum, cerebral cortex, and hippocampus. The top gene pathways that were changed in astrocytes from spinal cord during chronic EAE involved decreases in expression of cholesterol synthesis genes while immune pathway gene expression in astrocytes was increased. Optic nerve from EAE and optic chiasm from MS also showed decreased cholesterol synthesis gene expression. The potential role of cholesterol synthesized by astrocytes during EAE and MS is discussed. Together, this provides proof-of-concept that a cell-specific and region-specific gene expression approach can provide potential treatment targets in distinct neuroanatomic regions during multifocal neurological diseases.


Subject(s)
Astrocytes/physiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Multiple Sclerosis/pathology , Transcriptome/physiology , Animals , Cholesterol/biosynthesis , Down-Regulation , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression Regulation , Homeostasis/physiology , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation
12.
Brain ; 141(1): 132-147, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29228214

ABSTRACT

Oestrogen treatments are neuroprotective in a variety of neurodegenerative disease models. Selective oestrogen receptor modifiers are needed to optimize beneficial effects while minimizing adverse effects to achieve neuroprotection in chronic diseases. Oestrogen receptor beta (ERβ) ligands are potential candidates. In the multiple sclerosis model chronic experimental autoimmune encephalomyelitis, ERβ-ligand treatment is neuroprotective, but mechanisms underlying this neuroprotection remain unclear. Specifically, whether there are direct effects of ERβ-ligand on CD11c+ microglia, myeloid dendritic cells or macrophages in vivo during disease is unknown. Here, we generated mice with ERβ deleted from CD11c+ cells to show direct effects of ERβ-ligand treatment in vivo on these cells to mediate neuroprotection during experimental autoimmune encephalomyelitis. Further, we use bone marrow chimeras to show that ERβ in peripherally derived myeloid cells, not resident microglia, are the CD11c+ cells mediating this protection. CD11c+ dendritic cell and macrophages isolated from the central nervous system of wild-type experimental autoimmune encephalomyelitis mice treated with ERβ-ligand expressed less iNOS and T-bet, but more IL-10, and this treatment effect was lost in mice with specific deletion of ERβ in CD11c+ cells. Also, we extend previous reports of ERβ-ligand’s ability to enhance remyelination through a direct effect on oligodendrocytes by showing that the immunomodulatory effect of ERβ-ligand acting on CD11c+ cells is necessary to permit the maturation of oligodendrocytes. Together these results demonstrate that targeting ERβ signalling pathways in CD11c+ myeloid cells is a novel strategy for regulation of the innate immune system in neurodegenerative diseases. To our knowledge, this is the first report showing how direct effects of a candidate neuroprotective treatment on two distinct cell lineages (bone marrow derived myeloid cells and oligodendrocytes) can have complementary neuroprotective effects in vivo.awx315media15688130498001.


Subject(s)
CD11 Antigens/metabolism , Encephalomyelitis, Autoimmune, Experimental/therapy , Estrogen Receptor beta/metabolism , Macrophages/physiology , Neuroprotective Agents/therapeutic use , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Marrow Transplantation/methods , CD11 Antigens/genetics , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Estrogen Receptor beta/genetics , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Histocompatibility Antigens Class II/metabolism , Ligands , Mice , Mice, Transgenic , Microfilament Proteins/metabolism , Myelin Basic Protein/metabolism , Myelin-Oligodendrocyte Glycoprotein/toxicity , Nitric Oxide Synthase Type II/metabolism , Ovariectomy , Peptide Fragments/toxicity
13.
J Neuroimmunol ; 304: 63-71, 2017 03 15.
Article in English | MEDLINE | ID: mdl-27771018

ABSTRACT

Protective effects of pregnancy during MS have led to clinical trials of estriol, the pregnancy estrogen, in MS. Since estriol binds to estrogen receptor (ER) beta, ER beta ligand could represent a "next generation estriol" treatment. Here, ER beta ligand treatment was protective in EAE in both sexes and across genetic backgrounds. Neuroprotection was shown in spinal cord, sparing myelin and axons, and in brain, sparing neurons and synapses. Longitudinal in vivo MRIs showed decreased brain atrophy in cerebral cortex gray matter and cerebellum during EAE. Investigation of ER beta ligand as a neuroprotective treatment for MS is warranted.


Subject(s)
Cyclohexanes/administration & dosage , Cyclohexanes/metabolism , Estrogen Receptor beta/metabolism , Multiple Sclerosis/metabolism , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/metabolism , Phenols/administration & dosage , Phenols/metabolism , Animals , Female , Ligands , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Multiple Sclerosis/prevention & control , Treatment Outcome
14.
Primates ; 57(1): 3-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26553203

ABSTRACT

We report the physical and behavioral development of one severely disabled female infant chimpanzee (Pan troglodytes schweinfurthii) of the well-habituated M group in the Mahale Mountains National Park. We documented interactions between the infant and its mother and with other group members. Congenital disabilities occur in many primate species, including chimpanzees. However, there have been only a few case studies of congenitally disabled chimpanzee infants and no reports examining how a chimpanzee mother copes with such a disabled infant in the wild. The observed infant exhibited symptoms resembling Down syndrome, similar to those reported previously for a captive chimpanzee. The mother did not allow nonrelatives to take care of the infant even though she had been previously relatively tolerant of allomothering by nonrelatives. The mother's compensatory care for her infant's disabilities and allomothering of the infant by its sister might have helped it to survive for 23 months in the wild. Other group members did not show any aversive or fearful reactions to the disabled infant.


Subject(s)
Down Syndrome/veterinary , Pan troglodytes , Social Behavior , Animals , Down Syndrome/etiology , Female , Mothers , Tanzania
15.
Lancet Neurol ; 15(1): 35-46, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26621682

ABSTRACT

BACKGROUND: Relapses of multiple sclerosis decrease during pregnancy, when the hormone estriol is increased. Estriol treatment is anti-inflammatory and neuroprotective in preclinical studies. In a small single-arm study of people with multiple sclerosis estriol reduced gadolinium-enhancing lesions and was favourably immunomodulatory. We assessed whether estriol treatment reduces multiple sclerosis relapses in women. METHODS: We did a randomised, double-blind, placebo-controlled phase 2 trial at 16 academic neurology centres in the USA, between June 28, 2007, and Jan 9, 2014. Women aged 18-50 years with relapsing-remitting multiple sclerosis were randomly assigned (1:1) with a random permuted block design to either daily oral estriol (8 mg) or placebo, each in combination with injectable glatiramer acetate 20 mg daily. Patients and all study personnel, except for pharmacists and statisticians, were masked to treatment assignment. The primary endpoint was annualised relapse rate after 24 months, with a significance level of p=0.10. Relapses were confirmed by an increase in Expanded Disability Status Scale score assessed by an independent physician. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT00451204. FINDINGS: We enrolled 164 patients: 83 were allocated to the estriol group and 81 were allocated to the placebo group. The annualised confirmed relapse rate was 0.25 relapses per year (95% CI 0.17-0.37) in the estriol group versus 0.37 relapses per year (0.25-0.53) in the placebo group (adjusted rate ratio 0.63, 95% CI 0.37-1.05; p=0.077). The proportion of patients with serious adverse events did not differ substantially between the estriol group and the placebo group (eight [10%] of 82 patients vs ten [13%] of 76 patients). Irregular menses were more common in the estriol group than in the placebo group (19 [23%] vs three [4%], p=0.0005), but vaginal infections were less common (one [1%] vs eight [11%], p=0.0117). There were no differences in breast fibrocystic disease, uterine fibroids, or endometrial lining thickness as assessed by clinical examination, mammogram, uterine ultrasound, or endometrial lining biopsy. INTERPRETATION: Estriol plus glatiramer acetate met our criteria for reducing relapse rates, and treatment was well tolerated over 24 months. These results warrant further investigation in a phase 3 trial. FUNDING: National Institutes of Health, National Multiple Sclerosis Society, Conrad N Hilton Foundation, Jack H Skirball Foundation, Sherak Family Foundation, and the California Community Foundation.


Subject(s)
Estriol/administration & dosage , Glatiramer Acetate/administration & dosage , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Adjuvants, Immunologic/administration & dosage , Adult , Double-Blind Method , Drug Therapy, Combination , Female , Humans , Middle Aged
16.
Nature ; 513(7518): 414-7, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25230664

ABSTRACT

Observations of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) provide valuable comparative data for understanding the significance of conspecific killing. Two kinds of hypothesis have been proposed. Lethal violence is sometimes concluded to be the result of adaptive strategies, such that killers ultimately gain fitness benefits by increasing their access to resources such as food or mates. Alternatively, it could be a non-adaptive result of human impacts, such as habitat change or food provisioning. To discriminate between these hypotheses we compiled information from 18 chimpanzee communities and 4 bonobo communities studied over five decades. Our data include 152 killings (n = 58 observed, 41 inferred, and 53 suspected killings) by chimpanzees in 15 communities and one suspected killing by bonobos. We found that males were the most frequent attackers (92% of participants) and victims (73%); most killings (66%) involved intercommunity attacks; and attackers greatly outnumbered their victims (median 8:1 ratio). Variation in killing rates was unrelated to measures of human impacts. Our results are compatible with previously proposed adaptive explanations for killing by chimpanzees, whereas the human impact hypothesis is not supported.


Subject(s)
Aggression/physiology , Aggression/psychology , Behavior, Animal/physiology , Human Activities , Models, Biological , Pan paniscus , Pan troglodytes , Africa , Animals , Animals, Wild/physiology , Animals, Wild/psychology , Female , Food , Humans , Male , Pan paniscus/physiology , Pan paniscus/psychology , Pan troglodytes/physiology , Pan troglodytes/psychology , Population Density , Sexual Behavior, Animal/physiology
17.
J Neuroimmunol ; 274(1-2): 53-61, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25005117

ABSTRACT

Chemokine (C-C motif) ligand 2 (CCL2), initially identified as monocyte chemoattractant protein-1 (MCP-1), recruits immune cells to the central nervous system (CNS) during autoimmune inflammation. CCL2 can be expressed by multiple cell types, but which cells are responsible for CCL2 function during acute and chronic phases of autoimmune disease is not known. We determined the role of CCL2 in astrocytes in vivo during experimental autoimmune encephalomyelitis (EAE) by using Cre-loxP gene deletion. Mice with a conditional gene deletion of CCL2 from astrocytes had less severe EAE late in disease while having a similar incidence and severity of disease at onset as compared to wild type (WT) control littermates. EAE mice devoid of CCL2 in astrocytes had less macrophage and T cell inflammation in the white matter of the spinal cord and less diffuse activation of astrocytes and microglia in both white and gray matter as well as less axonal loss and demyelination, compared to WT littermates. These findings demonstrate that CCL2 in astrocytes plays an important role in the continued recruitment of immune cells and activation of glial cells in the CNS during chronic EAE, thereby suggesting a novel cell specific target for neuroprotective treatments of chronic neuroinflammatory diseases.


Subject(s)
Astrocytes/immunology , Chemokine CCL2/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Animals , Chemokine CCL2/genetics , Chronic Disease , Demyelinating Diseases/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Macrophages/immunology , Male , Mice , Mice, Knockout , Microglia/immunology , Myelin Sheath/immunology , Spinal Cord/immunology , T-Lymphocytes/immunology
18.
Neuroimage ; 101: 625-32, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25038439

ABSTRACT

Gray matter atrophy has been shown to be a strong correlate to clinical disability in multiple sclerosis (MS) and its most commonly used animal model, experimental autoimmune encephalomyelitis (EAE). However, the relationship between gray mater atrophy and the spinal cord pathology often observed in EAE has never been established. Here EAE was induced in Thy1.1-YFP mice and their brains imaged using in vivo magnetic resonance imaging (MRI). The brains and spinal cords were subsequently optically cleared using Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY). Axons were followed 5mm longitudinally in three dimensions in intact spinal cords revealing that 61% of the axons exhibited a mean of 22 axonal ovoids and 8% of the axons terminating in axonal end bulbs. In the cerebral cortex, we observed a decrease in the mean number of layer V pyramidal neurons and a decrease in the mean length of the apical dendrites of the remaining neurons, compared to healthy controls. MRI analysis demonstrated decreased cortical volumes in EAE. Cross-modality correlations revealed a direct relationship between cortical volume loss and axonal end bulb number in the spinal cord, but not ovoid number. This is the first report of the use of CLARITY in an animal model of disease and the first report of the use of both CLARITY and MRI.


Subject(s)
Cerebral Cortex/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Gray Matter/pathology , Laser Scanning Cytometry/methods , Spinal Cord/pathology , Acrylamide , Animals , Atrophy/pathology , Cerebral Cortex/cytology , Disease Models, Animal , Gray Matter/cytology , Hydrogels , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Multimodal Imaging , Spinal Cord/cytology
19.
Proc Natl Acad Sci U S A ; 111(7): 2806-11, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24550311

ABSTRACT

Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.


Subject(s)
Central Nervous System/physiopathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression Regulation/genetics , Nerve Degeneration/genetics , Sex Chromosomes/genetics , Analysis of Variance , Animals , Bone Marrow Transplantation , Female , Fluorescent Antibody Technique , In Situ Hybridization, Fluorescence , Male , Mice , Nerve Degeneration/pathology , Toll-Like Receptor 7/metabolism , Transplantation Chimera
20.
Am J Phys Anthropol ; 153(1): 139-43, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24318948

ABSTRACT

If a social-living animal has a long life span, permitting different generations to co-exist within a social group, as is the case in many primate species, it can be beneficial for a parent to continue to support its weaned offspring to increase the latter's survival and/or reproductive success. Chimpanzees have an even longer period of dependence on their mothers' milk than do humans, and consequently, offspring younger than 4.5-5 years old cannot survive if the mother dies. Most direct maternal investments, such as maternal transportation of infants and sharing of night shelters (beds or nests), end with nutritional weaning. Thus, it had been assumed that a mother's death was no longer critical to the survival of weaned offspring, in contrast to human children, who continue to depend on parental care long after weaning. However, in theory at least, maternal investment in a chimpanzee son after weaning could be beneficial because in chimpanzees' male-philopatric society, mother and son co-exist for a long time after the offspring's weaning. Using long-term demographic data for a wild chimpanzee population in the Mahale Mountains, Tanzania, we show the first empirical evidence that orphaned chimpanzee sons die younger than expected even if they lose their mothers after weaning. This suggests that long-lasting, but indirect, maternal investment in sons continues several years after weaning and is vital to the survival of the sons. The maternal influence on males in the male-philopatric societies of hominids may be greater than previously believed.


Subject(s)
Animals, Wild/growth & development , Animals, Wild/physiology , Pan troglodytes/growth & development , Pan troglodytes/physiology , Animals , Anthropology, Physical , Female , Male , Proportional Hazards Models , Survival Analysis , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...