Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 131(5): 509-517, 2021 May.
Article in English | MEDLINE | ID: mdl-33485751

ABSTRACT

Ammonia gas-tolerant extremophilic bacteria capable of growing in atmospheres containing up to 4000 ppm of gaseous ammonia were isolated. These bacteria were capable of growing in nutrient broth containing high concentrations of ammonia water, with growth in medium augmented with 0.1-0.2% ammonia exceeding that in medium without ammonia. The minimal inhibitory concentration of ammonia in the medium was 0.5%. The isolated ammonia gas-tolerant bacterium was moderately alkaliphilic, with optimum growth was observed at pH 9. DNA sequence analysis of the 16SrRNA gene revealed that the isolated bacterium was Bacillus lentus. Furthermore, extremophilic bacteria cultured in a 1300 ppm ammonia gas atmosphere on agar medium containing no nitrogen sources were observed to use ammonia gas for growth. These bacteria were identified as Paenibacillus lentus and Bacillus altitudinis based on 16SrRNA gene sequence analysis. The deodorizing effect of ammonia odor by the isolated bacteria immobilized on sawdust was evaluated. The findings showed that forcing ammonia gas through a column containing B. altitudinis immobilized on sawdust reduced the concentration of ammonia gas by 30% compared to columns containing sawdust only. The isolated bacteria immobilized on wood sawdust lost the capacity deodorization after drying, but this function could be restored with increased moisture. The ammonia gas-tolerant extremophilic bacteria immobilized on sawdust show considerable potential for use in ameliorating malodors associated with outdoor heat-treated toilets.


Subject(s)
Ammonia/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Bathroom Equipment , Extremophiles/isolation & purification , Extremophiles/metabolism , Hot Temperature , Nitrogen/metabolism
2.
J Phys Condens Matter ; 28(44): 444001, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27604421

ABSTRACT

Potassium-doped picene (K3.0picene) with a superconducting transition temperature (T C) as high as 14 K at ambient pressure has been prepared using an annealing technique. The shielding fraction of this sample was 5.4% at 0 GPa. The T C showed a positive pressure-dependence and reached 19 K at 1.13 GPa. The shielding fraction also reached 18.5%. To investigate the chemical composition and the state of the picene skeleton in the superconducting sample, we used energy-dispersive x-ray (EDX) spectroscopy, MALDI-time-of-flight (MALDI-TOF) mass spectroscopy and x-ray diffraction (XRD). Both EDX and MALDI-TOF indicated no contamination with materials other than K-doped picene or K-doped picene fragments, and supported the preservation of the picene skeleton. However, it was also found that a magnetic K-doped picene sample consisted mainly of picene fragments or K-doped picene fragments. Thus, removal of the component contributing the magnetic quality to a superconducting sample should enhance the volume fraction.

3.
Sci Rep ; 6: 18931, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26732250

ABSTRACT

Doping with the optimum concentration of carriers (electrons or holes) can modify the physical properties of materials. Therefore, improved ways to achieve carrier doping have been pursued extensively for more than 50 years. Metal-intercalation is one of the most important techniques for electron doping of organic / inorganic solids, and has produced superconductors from insulators and metallic solids. The most successful examples are metal-intercalated graphite and C60 superconductors. Metal intercalation has been performed using solid-reaction and liquid solvent techniques. However, precise control of the quantity of intercalants in the target solids can be difficult to achieve using these methods, as that quantity depends largely on the initial conditions. Here we report an electrochemical method for metal-intercalation, and demonstrate the preparation of superconductors using organic and inorganic materials (C60 and FeSe). The metal atoms are effectively intercalated into the spaces in C60 and FeSe solids by supplying an electric current between electrodes in a solvent that includes electrolytes. The recorded superconducting transition temperatures, Tc's, were the same as those of metal-intercalated C60 and FeSe prepared using solid-reaction or liquid solvent techniques. This technique may open a new avenue in the search for organic / inorganic superconductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...