Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 40(4): 943-51, 2006 Mar 03.
Article in English | MEDLINE | ID: mdl-16388927

ABSTRACT

A method is presented for determination of microsomal metabolic stability of potential positron emission tomography (PET) tracers by LC-MS/MS in the lower nm range. The PET tracers used for the study were the serotonin receptor antagonist WAY-100635 and two potential tracer analogues. The sensitivity permitted the substrates to be directly collected from PET radiolabelling batches, containing very low amounts of substance (0.3-7 microg), for subsequent metabolic stability incubations. Sample preparation was minimal, with addition of internal standard, acetonitrile and a fast centrifugation step, as a result of the low protein concentration of the microsome solutions. Linearity (R2 > or = 0.99), precision (inter-assay R.S.D. < 7%) and accuracy (bias < or = 8%) for the tested concentration range 0.5-5 nM proved to be well within accepted limits. No significant differences in metabolic rates were detected using substrates from cold (non-labelling) chemistry syntheses and PET labelling batches, indicating the validity of using substrates from the latter source. A para-methoxy-benzamide analogue (MeO-WAY) displayed a significantly lower rate of metabolism compared to WAY-100635, whereas a para-iodo-benzamide analogue was more susceptible to metabolic transformation. LC-MS/MS Analysis of formed metabolites from WAY-100635 and MeO-WAY suggested similar metabolic pathways, with hydroxylation, demethylation and dearylation reactions. The main metabolic route in humans, amide hydrolysis, was not observed with the rat liver microsome assay.


Subject(s)
Chromatography, Liquid/methods , Microsomes, Liver/metabolism , Piperazines/metabolism , Pyridines/metabolism , Radiopharmaceuticals/metabolism , Serotonin Antagonists/metabolism , Animals , Biotransformation , Carbon Radioisotopes , Drug Stability , In Vitro Techniques , Mass Spectrometry , Piperazines/chemistry , Positron-Emission Tomography/methods , Pyridines/chemistry , Radioactive Tracers , Radiopharmaceuticals/chemistry , Rats , Reproducibility of Results , Serotonin Antagonists/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...