Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 2: 149, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25331068

ABSTRACT

Hypersynchronicity of neuronal brain circuits is a feature of Alzheimer's disease (AD). Mouse models of AD expressing mutated forms of the amyloid-ß precursor protein (APP), a central protein involved in AD pathology, show cortical hypersynchronicity. We studied hippocampal circuitry in APP23 transgenic mice using telemetric electroencephalography (EEG), at the age of onset of memory deficits. APP23 mice display spontaneous hypersynchronicity in the hippocampus including epileptiform spike trains. Furthermore, spectral contributions of hippocampal theta and gamma oscillations are compromised in APP23 mice, compared to non-transgenic controls. Using cross-frequency coupling analysis, we show that hippocampal gamma amplitude modulation by theta phase is markedly impaired in APP23 mice. Hippocampal hypersynchronicity and waveforms are differentially modulated by injection of riluzole and the non-competitive N-methyl-D-aspartate (NMDA) receptor inhibitor MK801, suggesting specific involvement of voltage-gated sodium channels and NMDA receptors in hypersynchronicity thresholds in APP23 mice. Furthermore, APP23 mice show marked activation of p38 mitogen-activated protein (MAP) kinase in hippocampus, and injection of MK801 but not riluzole reduces activation of p38 in the hippocampus. A p38 inhibitor induces hypersynchronicity in APP23 mice to a similar extent as MK801, thus supporting suppression of hypersynchronicity involves NMDA receptors-mediated p38 activity. In summary, we characterize components of hippocampal hypersynchronicity, waveform patterns and cross-frequency coupling in the APP23 mouse model by pharmacological modulation, furthering the understanding of epileptiform brain activity in AD.


Subject(s)
Alzheimer Disease/physiopathology , Hippocampus/physiopathology , Receptors, N-Methyl-D-Aspartate/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Disease Models, Animal , Dizocilpine Maleate/pharmacology , Electrodes, Implanted , Electroencephalography , Enzyme Inhibitors/pharmacology , Epilepsy/physiopathology , Excitatory Amino Acid Antagonists/pharmacology , Gamma Rhythm , Hippocampus/drug effects , Imidazoles/pharmacology , Male , Mice, Inbred C57BL , Mice, Transgenic , Pyridines/pharmacology , Riluzole/pharmacology , Theta Rhythm , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
2.
Diabetologia ; 57(7): 1410-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24733160

ABSTRACT

AIMS/HYPOTHESIS: Regulation of insulin secretion along the secretory pathway is incompletely understood. We addressed the expression of SIL1, a nucleotide exchange factor for the endoplasmic reticulum (ER) chaperone glucose-regulated protein 78 kD (GRP78), in pancreatic beta cells and investigated whether or not SIL1 is involved in beta cell function. METHODS: SIL1 expression was analysed by immunoblotting and immunofluorescence. Metabolic and islet variables, including glucose tolerance, beta cell mass, insulin secretion, islet ultrastructure, insulin content and levels of ER stress marker proteins, were addressed in Sil1 knockout (Sil1 (-/-)) mice. Insulin, proinsulin and C-peptide release was addressed in Sil1 (-/-) islets, and SIL1 overexpression or knockdown was explored in MIN6 cells in vitro. Models of type 1 diabetes and insulin resistance were induced in Sil1 (-/-) mice by administration of streptozotocin (STZ) and a high-fat diet (HFD), respectively. RESULTS: We show that SIL1 is expressed in pancreatic beta cells and is required for islet insulin content, islet sizing, glucose tolerance and glucose-stimulated insulin secretion in vivo. Levels of pancreatic ER stress markers are increased in Sil1 (-/-) mice, and Sil1 (-/-) beta cell ER is ultrastructurally compromised. Isolated Sil1 (-/-) islets show lower proinsulin and insulin content and impaired glucose-stimulated insulin secretion. Modulation of SIL1 protein levels in MIN6 cells correlates with changes in insulin content and secreted insulin. Furthermore, Sil1 (-/-) mice are more susceptible to STZ-induced type 1 diabetes with increased apoptosis. Upon HFD feeding, Sil1 (-/-) mice show markedly lower insulin secretion and exacerbated glucose intolerance compared with control mice. Surprisingly, however, HFD-fed Sil1 (-/-) mice display pronounced islet hyperplasia with low amounts of insulin in total pancreas. CONCLUSIONS/INTERPRETATION: These results reveal a novel role for the nucleotide exchange factor SIL1 in pancreatic beta cell function under physiological and disease conditions such as diabetes and the metabolic syndrome.


Subject(s)
Endoplasmic Reticulum/metabolism , Glucose/pharmacology , Guanine Nucleotide Exchange Factors/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Animals , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/physiology , Guanine Nucleotide Exchange Factors/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Insulin Secretion , Insulin-Secreting Cells/drug effects , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...