Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(23)2021 06.
Article in English | MEDLINE | ID: mdl-34088665

ABSTRACT

While a structural description of the molecular mechanisms guiding ribosome assembly in eukaryotic systems is emerging, bacteria use an unrelated core set of assembly factors for which high-resolution structural information is still missing. To address this, we used single-particle cryo-electron microscopy to visualize the effects of bacterial ribosome assembly factors RimP, RbfA, RsmA, and RsgA on the conformational landscape of the 30S ribosomal subunit and obtained eight snapshots representing late steps in the folding of the decoding center. Analysis of these structures identifies a conserved secondary structure switch in the 16S ribosomal RNA central to decoding site maturation and suggests both a sequential order of action and molecular mechanisms for the assembly factors in coordinating and controlling this switch. Structural and mechanistic parallels between bacterial and eukaryotic systems indicate common folding features inherent to all ribosomes.


Subject(s)
Ribosome Subunits, Small, Bacterial , Ribosomes , Cryoelectron Microscopy , RNA, Ribosomal, 16S/genetics , Ribosome Subunits, Small
2.
Biomol NMR Assign ; 14(2): 317-321, 2020 10.
Article in English | MEDLINE | ID: mdl-32671633

ABSTRACT

RbfA (ribosome binding factor A; 15.2 kDa) is a protein involved in ribosome biogenesis and has been shown to be important for growth at low temperatures and to act as a suppressor for a cold-sensitive mutation (C23U) in the ribosomal RNA of the small 30S ribosomal subunit. The 3D structure of isolated RbfA has been determined from several organisms showing that RbfA has type-II KH-domain fold topology similar to the KH domain of another assembly factor, Era, whose overexpression can compensate for the deletion of rbfA, suppressing both the cold sensitivity and abnormal accumulation of 17S rRNA in rbfA knockout stains. Interestingly, a RbfAΔ25 variant used in previous NMR studies, truncated at the C-terminal domain to remove 25 unstructured residues causing aggregation at room temperature, was biologically active in the sense that it could complement a knock-out of wildtype RbfA, although it did not act as a suppressor for a 16S cold-sensitive mutation (C23U), nor did it interact stably with the 30S subunit. To complement this work, we report the 1H, 13C, and 15 N backbone and sidechain NMR resonance assignments of full length RbfA from Escherichia coli measured under physiological conditions (pH 7.6). This construct contains seven additional C-terminal residues from the cloning (i.e. one alanine and six residues from the HRV 3C cleavage site) and no aggregation issues were observed over a 1-week period at 293 K. The assignment data has been deposited in the BMRB data bank under Accession No. 27857.


Subject(s)
Escherichia coli Proteins/analysis , Escherichia coli/metabolism , Nuclear Magnetic Resonance, Biomolecular , Ribosomal Proteins/analysis , Ribosomes/metabolism , Amino Acid Sequence , Escherichia coli Proteins/chemistry , Protein Structure, Secondary , Ribosomal Proteins/chemistry
3.
Biomol NMR Assign ; 14(2): 189-193, 2020 10.
Article in English | MEDLINE | ID: mdl-32303998

ABSTRACT

Ribosome biogenesis is an energetically expensive and complex cellular process that involves the coordinated folding of the ribosomal RNA and dozens of ribosomal proteins. It proceeds along multiple parallel pathways and is guided by trans-acting factors called ribosome assembly factors. Although this process has been studied for decades, there are still many open questions regarding the role of the ribosome assembly factors in directing the folding of ribosome biogenesis intermediates. RimP is one of the early acting factors and guides the assembly of the small 30S ribosomal subunit by facilitating the binding of ribosomal proteins uS5 and uS12. Here we report the virtually complete 1H, 15N, and 13C chemical shift assignment of RimP from Escherichia coli. The NMR chemical shift data, deposited in the BMRB data bank under Accession No. 28014, indicates a widely folded protein composed of three alpha helices and eight beta strands.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Nuclear Magnetic Resonance, Biomolecular , Ribosomal Proteins/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Nitrogen Isotopes , Protein Structure, Secondary
4.
Nucleic Acids Res ; 45(11): 6945-6959, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28482099

ABSTRACT

During 30S ribosomal subunit biogenesis, assembly factors are believed to prevent accumulation of misfolded intermediate states of low free energy that slowly convert into mature 30S subunits, namely, kinetically trapped particles. Among the assembly factors, the circularly permuted GTPase, RsgA, plays a crucial role in the maturation of the 30S decoding center. Here, directed hydroxyl radical probing and single particle cryo-EM are employed to elucidate RsgA΄s mechanism of action. Our results show that RsgA destabilizes the 30S structure, including late binding r-proteins, providing a structural basis for avoiding kinetically trapped assembly intermediates. Moreover, RsgA exploits its distinct GTPase pocket and specific interactions with the 30S to coordinate GTPase activation with the maturation state of the 30S subunit. This coordination validates the architecture of the decoding center and facilitates the timely release of RsgA to control the progression of 30S biogenesis.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , GTP Phosphohydrolases/chemistry , Catalytic Domain , Cryoelectron Microscopy , Enzyme Activation , Escherichia coli Proteins/physiology , GTP Phosphohydrolases/physiology , Guanosine Triphosphate/chemistry , Hydrogen Bonding , Hydrolysis , Models, Molecular , Protein Binding , Protein Structure, Quaternary , Ribosome Subunits, Small, Bacterial
5.
Nucleic Acids Res ; 45(4): 2179-2187, 2017 02 28.
Article in English | MEDLINE | ID: mdl-27986852

ABSTRACT

In bacteria, the start site and the reading frame of the messenger RNA are selected by the small ribosomal subunit (30S) when the start codon, typically an AUG, is decoded in the P-site by the initiator tRNA in a process guided and controlled by three initiation factors. This process can be efficiently inhibited by GE81112, a natural tetrapeptide antibiotic that is highly specific toward bacteria. Here GE81112 was used to stabilize the 30S pre-initiation complex and obtain its structure by cryo-electron microscopy. The results obtained reveal the occurrence of changes in both the ribosome conformation and initiator tRNA position that may play a critical role in controlling translational fidelity. Furthermore, the structure highlights similarities with the early steps of initiation in eukaryotes suggesting that shared structural features guide initiation in all kingdoms of life.


Subject(s)
Peptide Chain Initiation, Translational , RNA, Messenger/genetics , RNA, Transfer, Met/genetics , Ribosome Subunits, Small, Bacterial/metabolism , Binding Sites , Escherichia coli/genetics , Escherichia coli/metabolism , Eukaryotic Cells/metabolism , Models, Molecular , Molecular Conformation , Prokaryotic Initiation Factors/chemistry , Prokaryotic Initiation Factors/metabolism , Protein Biosynthesis/genetics , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA, Transfer, Met/chemistry , RNA, Transfer, Met/metabolism , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Small, Bacterial/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...