Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 12(6): 5071-5, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22905579

ABSTRACT

Experimental data on microstructural (crystalline volume fraction, grain size) and magnetic (coercive field) properties in amorphous and nanocrystalline Fe73.5-x(Co0.5Ni0.5)xSi13.5B9Nb3Cu1 alloy ribbons (x = 2.5, 5 and 10) are presented. Nanocrystalline structure was developed by annealing the precursor amorphous ribbons by current annealing (CA) and stress-current-annealing (SA). Microstructural analysis of the treated ribbons using X-ray Diffraction showed a high content of amorphous phase in the bulk. In addition, substantial changes in the crystalline state such as grain size of the samples annealed at different conditions were observed. The alloy composition also affects greatly the grain size,: increasing the (Co,Ni) content leads to higher values of the average grain size. The evolutions of the coercive field with the two kinds of thermal treatment were analysed, allowing us to conclude that the addition of (Co,Ni) tends to reduce the magnetic softness character of the original material, while the treated SA samples show higher coercivities higher than those treated without by CA.


Subject(s)
Alloys/chemistry , Metals/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Electrochemistry , Hardness , Hot Temperature , Macromolecular Substances/chemistry , Magnetic Fields , Materials Testing , Molecular Conformation , Particle Size , Surface Properties , Tensile Strength
2.
J Nanosci Nanotechnol ; 8(6): 2912-22, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18681027

ABSTRACT

Different kinds of magnetic anisotropies have been induced during the nanocrystallization process of Co- and Ni-rich amorphous ferromagnetic (Finemet) ribbons by the application of a constant stress or an axial magnetic field during the annealing process. Magnetization measurements have evidenced the presence od macroscopic anisotropy in the treated samples. The main goal of this work has been, after a careful DSC study, the structural analysis of the treated ribbons using X-ray Diffraction and Atomic Force Microscopy (AFM), detecting substantial differences in the crystallization state and grain size of the samples depending on the thermal treatment that was carried out. Moreover, AFM measurements revealed in all the treated samples a strong nanocrystallisation of the surface without evidences of amorphous matrix, which contrast with XRD measurements that have shown a high content of amorphous phase in the bulk of the ribbons. Magneto-optical Kerr effect measurements have been performed with the aim to elucidate the complex magnetic behaviour that is expected for the surface of the ribbons, measuring surface hysteresis loops that showed much higher coercive field values than that obtained in the bulk material.

SELECTION OF CITATIONS
SEARCH DETAIL
...