Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Res Tech ; 86(10): 1237-1248, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36924345

ABSTRACT

A method for optimizing an automatic selection of values for parameters that feed segmentation algorithms is proposed. Evolutionary optimization techniques in combination with a fitness function based on a mutual information parameter have been used to find the optimal parameter values of region growing, fuzzy c-means and graph cut segmentation algorithms. To validate the method, the segmentation of two transmission electron microscopy tomography reconstructed volumes of a carbon black-reinforced rubber and a polylactic acid and clay nanocomposite is carried out (i) using evolutionary optimization techniques and (ii) manually by experts. The results confirm that the use of evolutionary optimization techniques, such as genetic algorithms, reduces the computational operation cost needed for a total grid search of segmentation parameters, reducing the probability of reaching a false optimum, and improving the segmentation quality. HIGHLIGHTS: A new approach to optimize 3D segmentation algorithms. Methodology to optimize segmentation parameters and improve segmentation quality. Improvement on the results when using region growing, fuzzy c-means and graph cuts algorithms.

2.
Polymers (Basel) ; 14(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36433160

ABSTRACT

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) is a bio-based polyester with the potential to replace some common polymers of fossil origin. However, PHBH presents serious limitations, such as low stiffness, tendency to undergo crystallization over long time periods and low resistance to thermal degradation during processing. In this work, we studied the use of alumina nanowires to generate PHBH-alumina nanocomposites, modifying the properties of PHBH to improve its usability. Solvent casting and melt blending were used to produce the nanocomposites. Then, their physicochemical properties and aquatic toxicity were measured. Finally, LCA was used to evaluate and compare the environmental impacts of several scenarios relevant to the processing and end of life (EoL) conditions of PHBHs. It was observed that, at low concentrations (3 wt.%), the alumina nanowires have a small positive impact on the stiffness and thermal degradation for the samples. However, for higher concentrations, the observed effects differed for each of the applied processing techniques (solvent casting or melt blending). The toxicity measurements showed that PHBH alone and in combination with alumina nanowires (10 wt.%) did not produce any impact on the survival of brine shrimp larvae after 24 and 48 h of exposure. The 18 impact categories evaluated by LCA allowed defining the most environmentally friendly conditions for the processing and EoL of PHBHs, and comparing the PHBH-related impacts to those of some of the most common fossil-based plastics. It was concluded that the preferable processing technique for PHBH is melt blending and that PHBH is unquestionably more environmentally friendly than every other analyzed plastic.

3.
Polymers (Basel) ; 11(12)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835758

ABSTRACT

Bio-based polymeric nanocomposites (NCs) with enhanced electrical conductivity and rigidity were obtained by adding multi-walled carbon nanotubes (CNTs) to a commercial bio-based polyamide 4,10 (PA410). Two different types of commercial CNTs (Cheap Tubes and Nanocyl NC7000TM) and two different preparation methods (using CNTs in powder form and a PA6-based masterbatch, respectively) were used to obtain melt-mixed PA410/CNT NCs. The effect of the preparation method as well as the degree of dispersion and aspect ratio of the CNTs on the electrical and mechanical properties of the processed NCs was studied. Superior electrical and mechanical behavior was observed in the Nanocyl CNTs-based NCs due to the enhanced dispersion and higher aspect ratio of the nanotubes. A much more significant reduction in aspect ratio was observed in the Cheap Tubes CNTs than in the Nanocyl CNTs. This was attributed to the fact that the shear stress applied during melt processing reduced the length of the CNTs to similar lengths in all cases, which pointed to the diameter of the CNTs as the key factor determing the properties of the NCs. The PA6 in the ternary PA410/PA6/CNT system led to improved Young's modulus values because the reinforcing effect of CNTs was greater in PA6 than in PA410.

4.
Micron ; 103: 64-77, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28992457

ABSTRACT

A method is proposed and verified for selecting the optimum segmentation of a TEM reconstruction among the results of several segmentation algorithms. The selection criterion is the accuracy of the segmentation. To do this selection, a parameter for the comparison of the accuracies of the different segmentations has been defined. It consists of the mutual information value between the acquired TEM images of the sample and the Radon projections of the segmented volumes. In this work, it has been proved that this new mutual information parameter and the Jaccard coefficient between the segmented volume and the ideal one are correlated. In addition, the results of the new parameter are compared to the results obtained from another validated method to select the optimum segmentation.

5.
Ultramicroscopy ; 173: 36-46, 2017 02.
Article in English | MEDLINE | ID: mdl-27907830

ABSTRACT

The SIRT (Simultaneous Iterative Reconstruction Technique) algorithm is commonly used in Electron Tomography to calculate the original volume of the sample from noisy images, but the results provided by this iterative procedure are strongly dependent on the specific implementation of the algorithm, as well as on the number of iterations employed for the reconstruction. In this work, a methodology for selecting the iteration number of the SIRT reconstruction that provides the most accurate segmentation is proposed. The methodology is based on the statistical analysis of the intensity profiles at the edge of the objects in the reconstructed volume. A phantom which resembles a a carbon black aggregate has been created to validate the methodology and the SIRT implementations of two free software packages (TOMOJ and TOMO3D) have been used.


Subject(s)
Electron Microscope Tomography/methods , Image Processing, Computer-Assisted/methods , Algorithms , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...