Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(5)2023 05 13.
Article in English | MEDLINE | ID: mdl-37239436

ABSTRACT

G-quadruplexes (G4s) have long been implicated in the regulation of chromatin packaging and gene expression. These processes require or are accelerated by the separation of related proteins into liquid condensates on DNA/RNA matrices. While cytoplasmic G4s are acknowledged scaffolds of potentially pathogenic condensates, the possible contribution of G4s to phase transitions in the nucleus has only recently come to light. In this review, we summarize the growing evidence for the G4-dependent assembly of biomolecular condensates at telomeres and transcription initiation sites, as well as nucleoli, speckles, and paraspeckles. The limitations of the underlying assays and the remaining open questions are outlined. We also discuss the molecular basis for the apparent permissive role of G4s in the in vitro condensate assembly based on the interactome data. To highlight the prospects and risks of G4-targeting therapies with respect to the phase transitions, we also touch upon the reported effects of G4-stabilizing small molecules on nuclear biomolecular condensates.


Subject(s)
G-Quadruplexes , Biomolecular Condensates , Cell Nucleus/genetics , RNA/genetics , Proteins
2.
Biochimie ; 204: 8-21, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36063975

ABSTRACT

G-quadruplexes (G4s) are gaining increasing attention as possible regulators of chromatin packaging, and robust approaches to their studies in pseudo-native context are much needed. Here, we designed a simple in vitro model of G4-prone genomic DNA and employed it to elucidate the impact of G4s and G4-stabilizing ligands on nucleosome occupancy. We obtained two 226-bp dsDNA constructs composed of the strong nucleosome positioning sequence and an internucleosomal DNA-imitating tail. The tail was G4-free in the control construct and harbored a "strong" (stable) G4 motif in the construct of interest. An additional "weak" (semi-stable) G4 motif was found within the canonical nucleosome positioning sequence. Both G4s were confirmed by optical methods and 1H NMR spectroscopy. Electrophoretic mobility assays showed that the weak G4 motif did not obstruct nucleosome assembly, while the strong G4 motif in the tail sequence diminished nucleosome yield. Atomic force microscopy data and molecular modeling confirmed that the strong G4 was maintained in the tail of the correctly assembled nucleosome structure. Using both in vitro and in silico models, we probed three known G4 ligands and detected nucleosome-disrupting effects of the least selective ligand. Our results are in line with the negative correlation between stable G4s and nucleosome density, support G4 tolerance between regularly positioned nucleosomes, and highlight the importance of considering chromatin context when targeting genomic G4s.


Subject(s)
Chromatin , G-Quadruplexes , Chromatin/genetics , Nucleosomes , Ligands , DNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...