Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
J Clin Med ; 13(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731241

ABSTRACT

Background: Chordomas pose a challenge in treatment due to their local invasiveness, high recurrence, and potential lethality. Despite being slow-growing and rarely metastasizing, these tumors often resist conventional chemotherapies (CTs) and radiotherapies (RTs), making surgical resection a crucial intervention. However, achieving radical resection for chordomas is seldom possible, presenting therapeutic challenges. The accurate diagnosis of these tumors is vital for their distinct prognoses, yet differentiation is hindered by overlapping radiological and histopathological features. Fortunately, recent molecular and genetic studies, including extracranial location analysis, offer valuable insights for precise diagnosis. This literature review delves into the genetic aberrations and molecular biology of chordomas, aiming to provide an overview of more successful therapeutic strategies. Methods: A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to 28 January 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "chordomas", "molecular biology", "gene aberrations", and "target therapies". The studies included in this review consist of preclinical cell studies, case reports, case series, randomized controlled trials, non-randomized controlled trials, and cohort studies reporting on genetic and biological aberrations in chordomas. Results: Of the initial 297 articles identified, 40 articles were included in the article. Two tables highlighted clinical studies and ongoing clinical trials, encompassing 18 and 22 studies, respectively. The clinical studies involved 185 patients diagnosed with chordomas. The tumor sites were predominantly sacral (n = 8, 44.4%), followed by clivus (n = 7, 38.9%) and lumbar spine (n = 3, 16.7%). Primary treatments preceding targeted therapies included surgery (n = 10, 55.6%), RT (n = 9, 50.0%), and systemic treatments (n = 7, 38.9%). Various agents targeting specific molecular pathways were analyzed in the studies, such as imatinib (a tyrosine kinase inhibitor), erlotinib, and bevacizumab, which target EGFR/VEGFR. Common adverse events included fatigue (47.1%), skin reactions (32.4%), hypertension (23.5%), diarrhea (17.6%), and thyroid abnormalities (5.9%). Clinical outcomes were systematically assessed based on progression-free survival (PFS), overall survival (OS), and tumor response evaluated using RECIST or CHOI criteria. Notably, stable disease (SD) occurred in 58.1% of cases, and partial responses (PRs) were observed in 28.2% of patients, while 13.7% experienced disease progression (PD) despite targeted therapy. Among the 22 clinical trials included in the analysis, Phase II trials were the most prevalent (40.9%), followed by I-II trials (31.8%) and Phase I trials (27.3%). PD-1 inhibitors were the most frequently utilized, appearing in 50% of the trials, followed by PD-L1 inhibitors (36.4%), CTLA-4 inhibitors (22.7%), and mTOR inhibitors (13.6%). Conclusions: This systematic review provides an extensive overview of the state of targeted therapy for chordomas, highlighting their potential to stabilize the illness and enhance clinical outcomes.

2.
J Integr Neurosci ; 23(5): 100, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38812383

ABSTRACT

BACKGROUND: Multiple radiomics models have been proposed for grading glioma using different algorithms, features, and sequences of magnetic resonance imaging. The research seeks to assess the present overall performance of radiomics for grading glioma. METHODS: A systematic literature review of the databases Ovid MEDLINE PubMed, and Ovid EMBASE for publications published on radiomics for glioma grading between 2012 and 2023 was performed. The systematic review was carried out following the criteria of Preferred Reporting Items for Systematic Reviews and Meta-Analysis. RESULTS: In the meta-analysis, a total of 7654 patients from 40 articles, were assessed. R-package mada was used for modeling the joint estimates of specificity (SPE) and sensitivity (SEN). Pooled event rates across studies were performed with a random-effects meta-analysis. The heterogeneity of SPE and SEN were based on the χ2 test. Overall values for SPE and SEN in the differentiation between high-grade gliomas (HGGs) and low-grade gliomas (LGGs) were 84% and 91%, respectively. With regards to the discrimination between World Health Organization (WHO) grade 4 and WHO grade 3, the overall SPE was 81% and the SEN was 89%. The modern non-linear classifiers showed a better trend, whereas textural features tend to be the best-performing (29%) and the most used. CONCLUSIONS: Our findings confirm that present radiomics' diagnostic performance for glioma grading is superior in terms of SEN and SPE for the HGGs vs. LGGs discrimination task when compared to the WHO grade 4 vs. 3 task.


Subject(s)
Brain Neoplasms , Glioma , Magnetic Resonance Imaging , Neoplasm Grading , Glioma/diagnostic imaging , Glioma/pathology , Humans , Magnetic Resonance Imaging/standards , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Neuroimaging/standards , Neuroimaging/methods , Radiomics
3.
World J Stem Cells ; 16(5): 604-614, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817336

ABSTRACT

BACKGROUND: Gliomas pose a significant challenge to effective treatment despite advancements in chemotherapy and radiotherapy. Glioma stem cells (GSCs), a subset within tumors, contribute to resistance, tumor heterogeneity, and plasticity. Recent studies reveal GSCs' role in therapeutic resistance, driven by DNA repair mechanisms and dynamic transitions between cellular states. Resistance mechanisms can involve different cellular pathways, most of which have been recently reported in the literature. Despite progress, targeted therapeutic approaches lack consensus due to GSCs' high plasticity. AIM: To analyze targeted therapies against GSC-mediated resistance to radio- and chemotherapy in gliomas, focusing on underlying mechanisms. METHODS: A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to September 30, 2023. The search strategy utilized relevant Medical Subject Heading terms and keywords related to including "glioma stem cells", "radiotherapy", "chemotherapy", "resistance", and "targeted therapies". Studies included in this review were publications focusing on targeted therapies against the molecular mechanism of GSC-mediated resistance to radiotherapy resistance (RTR). RESULTS: In a comprehensive review of 66 studies on stem cell therapies for SCI, 452 papers were initially identified, with 203 chosen for full-text analysis. Among them, 201 were deemed eligible after excluding 168 for various reasons. The temporal breakdown of studies illustrates this trend: 2005-2010 (33.3%), 2011-2015 (36.4%), and 2016-2022 (30.3%). Key GSC models, particularly U87 (33.3%), U251 (15.2%), and T98G (15.2%), emerge as significant in research, reflecting their representativeness of glioma characteristics. Pathway analysis indicates a focus on phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) (27.3%) and Notch (12.1%) pathways, suggesting their crucial roles in resistance development. Targeted molecules with mTOR (18.2%), CHK1/2 (15.2%), and ATP binding cassette G2 (12.1%) as frequent targets underscore their importance in overcoming GSC-mediated resistance. Various therapeutic agents, notably RNA inhibitor/short hairpin RNA (27.3%), inhibitors (e.g., LY294002, NVP-BEZ235) (24.2%), and monoclonal antibodies (e.g., cetuximab) (9.1%), demonstrate versatility in targeted therapies. among 20 studies (60.6%), the most common effect on the chemotherapy resistance response is a reduction in temozolomide resistance (51.5%), followed by reductions in carmustine resistance (9.1%) and doxorubicin resistance (3.0%), while resistance to RTR is reduced in 42.4% of studies. CONCLUSION: GSCs play a complex role in mediating radioresistance and chemoresistance, emphasizing the necessity for precision therapies that consider the heterogeneity within the GSC population and the dynamic tumor microenvironment to enhance outcomes for glioblastoma patients.

4.
J Clin Neurosci ; 125: 68-75, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759350

ABSTRACT

BACKGROUND: Several risk stratification scores have been suggested to aid prognostication and guide treatment strategies for brain metastases (BMs). However, the current scores do not focus on the specific neurosurgical population, therefore not predicting short-term mortality and postoperative performance status. METHODS: This retrospective observational study of 362 consecutive patients treated with surgery for BMs aims to identify the factors associated with post-surgical outcomes and propose a surgery-specific prognostic score for patients with BMs candidate for open surgery. RESULTS: Factors significantly associated with OS and performance status in multivariate analysis were age, KPS, surgical site, synchronous debut of BM, number, tumor volume, seizure, extra-cranial metastases, and deep-seated location. The variables were incorporated into the Anamnestic Radiological Metastases Outcome Surgical score (ARMO-S). The values range between 0 and 10. Patients were divided into two groups (low-risk and high-risk) based on each significant subgroup's median survival and performance status with an optimal cutoff value determined as 4. The two groups have significant differences in OS (9.6 versus 14 months, p = 0.0048) postoperative KPS (90 versus 70, p = 0.012) and KPS at last follow-up evaluation (75 versus 30, p < 0.001) CONCLUSION: ARMO-S is a simple and comprehensive score for BM patients selected for neurosurgery, as it incorporates the main factors of the most important prognostic scores, implementing them with more surgery-specific predictive elements such as tumor location and volume, presence of seizures at onset, and involvement of eloquent brain areas.


Subject(s)
Brain Neoplasms , Humans , Male , Brain Neoplasms/surgery , Brain Neoplasms/secondary , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/mortality , Female , Middle Aged , Retrospective Studies , Aged , Adult , Prognosis , Treatment Outcome , Aged, 80 and over , Neurosurgical Procedures , Karnofsky Performance Status
5.
World J Transplant ; 14(1): 89674, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38576751

ABSTRACT

BACKGROUND: Previous assessments of stem cell therapy for spinal cord injuries (SCI) have encountered challenges and constraints. Current research primarily emphasizes safety in early-phase clinical trials, while systematic reviews prioritize effectiveness, often overlooking safety and translational feasibility. This situation prompts inquiries regarding the readiness for clinical adoption. AIM: To offer an up-to-date systematic literature review of clinical trial results con cerning stem cell therapy for SCI. METHODS: A systematic search was conducted across major medical databases [PubMed, Embase, Reference Citation Analysis (RCA), and Cochrane Library] up to October 14, 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "spinal cord", "injury", "clinical trials", "stem cells", "functional outcomes", and "adverse events". Studies included in this review consisted of randomized controlled trials and non-randomized controlled trials reporting on the use of stem cell therapies for the treatment of SCI. RESULTS: In a comprehensive review of 66 studies on stem cell therapies for SCI, 496 papers were initially identified, with 237 chosen for full-text analysis. Among them, 236 were deemed eligible after excluding 170 for various reasons. These studies encompassed 1086 patients with varying SCI levels, with cervical injuries being the most common (42.2%). Bone marrow stem cells were the predominant stem cell type used (71.1%), with various administration methods. Follow-up durations averaged around 84.4 months. The 32.7% of patients showed functional impro vement from American spinal injury association Impairment Scale (AIS) A to B, 40.8% from AIS A to C, 5.3% from AIS A to D, and 2.1% from AIS B to C. Sensory improvements were observed in 30.9% of patients. A relatively small number of adverse events were recorded, including fever (15.1%), headaches (4.3%), muscle tension (3.1%), and dizziness (2.6%), highlighting the potential for SCI recovery with stem cell therapy. CONCLUSION: In the realm of SCI treatment, stem cell-based therapies show promise, but clinical trials reveal potential adverse events and limitations, underscoring the need for meticulous optimization of transplantation conditions and parameters, caution against swift clinical implementation, a deeper understanding of SCI pathophysiology, and addressing ethical, tumorigenicity, immunogenicity, and immunotoxicity concerns before gradual and careful adoption in clinical practice.

6.
J Clin Med ; 13(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38592330

ABSTRACT

Purpose: Clinical evidence suggests an association between comorbidities and outcome in patients with glioblastoma (GBM). We hypothesised that the internal carotid artery (ICA) calcium score could represent a promising prognostic biomarker in a competing risk analysis in patients diagnosed with GBM. Methods: We validated the use of the ICA calcium score as a surrogate marker of the coronary calcium score in 32 patients with lung cancer. Subsequently, we assessed the impact of the ICA calcium score on overall survival in GBM patients treated with radio-chemotherapy. Results: We analysed 50 GBM patients. At the univariate analysis, methyl-guanine-methyltransferase gene (MGMT) promoter methylation (p = 0.048), gross total tumour resection (p = 0.017), and calcium score (p = 0.011) were significant prognostic predictors in patients with GBM. These three variables also maintained statistical significance in the multivariate analysis. Conclusions: the ICA calcium score could be a promising prognostic biomarker in GBM patients.

7.
J Clin Med ; 13(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38673630

ABSTRACT

Background/Objectives: Tuberculum sellae meningiomas (TSMs) constitute 5-10% of intracranial meningiomas, often causing visual impairment. Traditional microsurgical transcranial approaches (MTAs) have been effective, but the emergence of innovative surgical trajectories, such as endoscopic endonasal approaches (EEAs), has sparked debate. While EEAs offer advantages like reduced brain retraction, they are linked to higher cerebrospinal fluid leak (CSF leak) risk. This meta-analysis aims to comprehensively compare the efficacy and safety of EEAs and MTAs for the resection of TSMs, offering insights into their respective outcomes and complications. Methods: A comprehensive literature review of the databases PubMed, Ovid MEDLINE, and Ovid EMBASE was conducted for articles published on TSMs treated with either EEA or MTA until 2024. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Meta-analysis was performed to estimate pooled event rates and assess heterogeneity. Fixed- and random-effects were used to assess 95% confidential intervals (CIs) of presenting symptoms, outcomes, and complications. Results: A total of 291 papers were initially identified, of which 18 studies spanning from 2000 to 2024 met the inclusion criteria. The exclusion of 180 articles was due to reasons such as irrelevance, non-reporting of selected results, systematic literature review or meta-analysis, and a lack of details on method/results. The 18 studies comprised a total sample of 1093 patients: 444 patients who underwent EEAs and 649 patients who underwent MTAs for TSMs. Gross total resection (GTR) rates ranged from 80.9% for EEAs to 79.8% for MTAs. The rate of visual improvement was 86.6% in the EEA group and 65.4% in the MTA group. The recurrence rate in the EEA group was 6.9%, while it was 5.1% in MTA group. The postoperative complications analyzed were CSF leak, infections, dysosmia, intracranial hemorrhage (ICH), and endocrine disorders. The rate of CSF leak was 9.8% in the EEA group and 2.1% in MTA group. The rate of infections in the EEA group was 5.7%, while it was 3.7% in the MTA group. The rate of dysosmia ranged from 10.3% for MTAs to 12.9% for EEAs. The rate of ICH in the EEA group was 0.9%, while that in the MTA group was 3.8%. The rate of endocrine disorders in the EEA group was 10.8%, while that in the MTA group was 10.2%. No significant difference was detected in the rate of GTR between the EEA and MTA groups (OR 1.15, 95% CI 0.7-0.95; p = 0.53), while a significant benefit in visual outcomes was shown in EEAs (OR 3.54, 95% CI 2.2-5.72; p < 0.01). There was no significant variation in the recurrence rate between EEA and MTA groups (OR 0.92, 95% CI 0.19-4.46; p = 0.89). While a considerably increased chance of CSF leak from EEAs was shown (OR 4.47, 95% CI 2.52-7.92; p < 0.01), no significant difference between EEA and MTA groups was detected in the rate of infections (OR 1.92, 95% CI 0.73-5.06; p = 0.15), the rate of dysosmia (OR 1.25, 95% CI 0.31-4.99; p = 0.71), the rate of ICH (OR 0.61, 95% CI 0.20-1.87; p = 0.33), and the rate of endocrine disorders (OR 1.16, 95% CI 0.69-1.95; p = 0.53). Conclusions: This meta-analysis suggests that both EEAs and MTAs are viable options for TSM resection, with distinct advantages and drawbacks. The EEAs demonstrate superior visual outcomes in selected cases while GTR and recurrence rates support the overall effectiveness of MTAs and EEAs. Endoscopic endonasal approaches had a higher chance of CSF leaks, but there are no appreciable variations in other complications. These results provide additional insights regarding patient outcomes in the intricate clinical setting of TSMs.

8.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612910

ABSTRACT

Glioblastoma is the most common malignant primary tumor of the CNS. The prognosis is dismal, with a median survival of 15 months. Surgical treatment followed by adjuvant therapies such as radiotherapy and chemotherapy characterize the classical strategy. The WNT pathway plays a key role in cellular proliferation, differentiation, and invasion. The DKK3 protein, capable of acting as a tumor suppressor, also appears to be able to modulate the WNT pathway. We performed, in a series of 40 patients, immunohistochemical and Western blot evaluations of DKK3 to better understand how the expression of this protein can influence clinical behavior. We used a statistical analysis, with correlations between the expression of DKK3 and overall survival, age, sex, Ki-67, p53, and MGMT and IDH status. We also correlated our data with information included in the cBioPortal database. In our analyses, DKK3 expression, in both immunohistochemistry and Western blot analyses, was reduced or absent in many cases, showing downregulation. To date, no clinical study exists in the literature that reports a potential correlation between IDH and MGMT status and the WNT pathway through the expression of DKK3. Modulation of this pathway through the expression of DKK3 could represent a new tailored therapeutic strategy in the treatment of glioblastoma.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Blotting, Western , Cell Proliferation , Combined Modality Therapy , Databases, Factual , Adaptor Proteins, Signal Transducing
9.
Front Biosci (Landmark Ed) ; 29(3): 114, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38538275

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder, characterized by progressive loss of both upper and lower motor neurons, resulting in clinical features such as muscle weakness, paralysis, and ultimately, respiratory failure. Nowadays, there is not effective treatment to reverse the progression of the disease, that leads to death within 3-5 years after the onset. Nevertheless, the induced pluripotent stem cells (iPS) technology could be the answer, providing disease modelling, drug testing, and cell-based therapies for this pathology. The aim of this work was to conduct a literature review of the past 5 years about the role of iPS in ALS, to better define the neurobiological mechanisms involved in the pathogenesis and the potential future therapies. The review also deals with advanced and currently available technologies used to reprogram cell lines and generate human motor neurons in vitro, which represent the source to study the pathological processes, the relationship between phenotype and genotype, the disease progression and the potential therapeutic targets of these group of disorders. Specific treatment options with stem cells involve Advance Gene Editing Technology, neuroprotective agents, and cells or exosomes transplantation, aimed to replace dead or damaged nerve cells. In summary, this review comprehensively addresses the role of human pluripotent stem cells (hPSCs) in motor neuron diseases (MND), with a focus on physiopathology, diagnostic and prognostic implications, specific and potential future treatment options. Understanding the biological mechanisms and practical implications of hPSCs in MND is crucial for advancing therapeutic strategies and improving outcomes for patients affected by these devastating diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/metabolism , Motor Neurons/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology
10.
Pharmaceutics ; 16(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38543223

ABSTRACT

BACKGROUND: The blood-brain barrier (BBB) regulates brain substance entry, posing challenges for treating brain diseases. Traditional methods face limitations, leading to the exploration of non-invasive intranasal drug delivery. This approach exploits the direct nose-to-brain connection, overcoming BBB restrictions. Intranasal delivery enhances drug bioavailability, reduces dosage, and minimizes systemic side effects. Notably, lipid nanoparticles, such as solid lipid nanoparticles and nanostructured lipid carriers, offer advantages like improved stability and controlled release. Their nanoscale size facilitates efficient drug loading, enhancing solubility and bioavailability. Tailored lipid compositions enable optimal drug release, which is crucial for chronic brain diseases. This review assesses lipid nanoparticles in treating neuro-oncological and neurodegenerative conditions, providing insights for effective nose-to-brain drug delivery. METHODS: A systematic search was conducted across major medical databases (PubMed, Ovid MEDLINE, and Scopus) up to 6 January 2024. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "lipid nanoparticles", "intranasal administration", "neuro-oncological diseases", and "neurodegenerative disorders". This review consists of studies in vitro, in vivo, or ex vivo on the intranasal administration of lipid-based nanocarriers for the treatment of brain diseases. RESULTS: Out of the initial 891 papers identified, 26 articles met the eligibility criteria after a rigorous analysis. The exclusion of 360 articles was due to reasons such as irrelevance, non-reporting selected outcomes, the article being a systematic literature review or meta-analysis, and lack of method/results details. This systematic literature review, focusing on nose-to-brain drug delivery via lipid-based nanocarriers for neuro-oncological, neurodegenerative, and other brain diseases, encompassed 60 studies. A temporal distribution analysis indicated a peak in research interest between 2018 and 2020 (28.3%), with a steady increase over time. Regarding drug categories, Alzheimer's disease was prominent (26.7%), followed by antiblastic drugs (25.0%). Among the 65 drugs investigated, Rivastigmine, Doxorubicin, and Carmustine were the most studied (5.0%), showcasing a diverse approach to neurological disorders. Notably, solid lipid nanoparticles (SLNs) were predominant (65.0%), followed by nanostructured lipid carriers (NLCs) (28.3%), highlighting their efficacy in intranasal drug delivery. Various lipids were employed, with glyceryl monostearate being prominent (20.0%), indicating preferences in formulation. Performance assessment assays were balanced, with in vivo studies taking precedence (43.3%), emphasizing the translation of findings to complex biological systems for potential clinical applications. CONCLUSIONS: This systematic review reveals the transformative potential of intranasal lipid nanoparticles in treating brain diseases, overcoming the BBB. Positive outcomes highlight the effectiveness of SLNs and NLCs, which are promising new approaches for ailments from AD to stroke and gliomas. While celebrating progress, addressing challenges like nanoparticle toxicity is also crucial.

11.
J Pers Med ; 14(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38541003

ABSTRACT

BACKGROUND: Chondrosarcomas rank as the second most common primary bone malignancy. Characterized by the production of a cartilaginous matrix, these tumors typically exhibit resistance to both radiotherapy (RT) and chemotherapy (CT), resulting in overall poor outcomes: a high rate of mortality, especially among children and adolescents. Due to the considerable resistance to current conventional therapies such as surgery, CT, and RT, there is an urgent need to identify factors contributing to resistance and discover new strategies for optimal treatment. Over the past decade, researchers have delved into the dysregulation of genes associated with tumor development and therapy resistance to identify potential therapeutic targets for overcoming resistance. Recent studies have suggested several promising biomarkers and therapeutic targets for chondrosarcoma, including isocitrate dehydrogenase (IDH1/2) and COL2A1. Molecule-targeting agents and immunotherapies have demonstrated favorable antitumor activity in clinical studies involving patients with advanced chondrosarcomas. In this systematic review, we delineate the clinical features of chondrosarcoma and provide a summary of gene dysregulation and mutation associated with tumor development, as well as targeted therapies as a promising molecular approach. Finally, we analyze the probable role of the tumor microenvironment in chondrosarcoma drug resistance. METHODS: A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to 10 November 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "chondrosarcomas", "target therapies", "immunotherapies", and "outcomes". The studies included in this review consist of randomized controlled trials, non-randomized controlled trials, and cohort studies reporting on the use of target therapies for the treatment of chondrosarcoma in human subjects. RESULTS: Of the initial 279 articles identified, 40 articles were included in the article. The exclusion of 140 articles was due to reasons such as irrelevance, non-reporting of selected results, systematic literature review or meta-analysis, and lack of details on the method/results. Three tables highlighted clinical studies, preclinical studies, and ongoing clinical trials, encompassing 13, 7, and 20 studies, respectively. For the clinical study, a range of molecular targets, such as death receptors 4/5 (DR4 and DR5) (15%), platelet-derived growth factor receptor-alpha or -beta (PDGFR-α, PDGFR-ß) (31%), were investigated. Adverse events were mainly constitutional symptoms emphasizing that to improve therapy tolerance, careful observation and tailored management are essential. Preclinical studies analyzed various molecular targets such as DR4/5 (28.6%) and COX-2 (28.6%). The prevalent indicator of antitumoral activity was the apoptotic rate of both a single agent (tumor necrosis factor-related apoptosis-inducing ligand: TRAIL) and double agents (TRAIL-DOX, TRAIL-MG132). Ongoing clinical trials, the majority in Phase II (53.9%), highlighted possible therapeutic strategies such as IDH1 inhibitors and PD-1/PD-L1 inhibitors (30.8%). CONCLUSIONS: The present review offers a comprehensive analysis of targeted therapeutics for skull base chondrosarcomas, highlighting a complex landscape characterized by a range of treatment approaches and new opportunities for tailored interventions. The combination of results from molecular research and clinical trials emphasizes the necessity for specialized treatment strategies and the complexity of chondrosarcoma biology.

12.
Neuropsychologia ; 198: 108876, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38555064

ABSTRACT

We retrospectively analyzed data from 15 patients, with a normal pre-operative cognitive performance, undergoing awake surgery for left fronto-temporal low-grade glioma. We combined a pre-surgical measure (fMRI maps of motor- and language-related centers) with intra-surgical measures (MNI-registered cortical sites data obtained during intra-operative direct electrical stimulation, DES, while they performed the two most common language tasks: number counting and picture naming). Selective DES effects along the precentral gyrus/inferior frontal gyrus (and/or the connected speech articulation network) were obtained. DES of the precentral gyrus evoked the motor speech arrest, i.e., anarthria (with apparent mentalis muscle movements). We calculated the number of shared voxels between the lip-tongue and overt counting related- and silent naming-related fMRI maps and the Volumes of Interest (VOIs) obtained by merging together the MNI sites at which a given speech disturbance was observed, normalized on their mean the values (i.e., Z score). Both tongue- and lips-related movements fMRI maps maximally overlapped (Z = 1.05 and Z = 0.94 for lips and tongue vs. 0.16 and -1.003 for counting and naming) with the motor speech arrest seed. DES of the inferior frontal gyrus, pars opercularis and the rolandic operculum induced speech arrest proper (without apparent mentalis muscle movements). This area maximally overlapped with overt counting-related fMRI map (Z = -0.11 and Z = 0.09 for lips and tongue vs. 0.9 and 0.0006 for counting and naming). Interestingly, our fMRI maps indicated reduced Broca's area activity during silent speech compared to overt speech. Lastly, DES of the inferior frontal gyrus, pars opercularis and triangularis evoked variations of the output, i.e., dysarthria, a motor speech disorder occurring when patients cannot control the muscles used to produce articulated sounds (phonemes). Silent object naming-related fMRI map maximally overlapped (Z = -0.93 and Z = -1.04 for lips and tongue vs. -1.07 and 0.99 for counting and naming) with this seed. Speech disturbances evoked by DES may be thought of as selective interferences with specific recruitment of left inferior frontal gyrus and precentral cortex which are differentiable in terms of the specific interference induced.


Subject(s)
Brain Mapping , Brain Neoplasms , Electric Stimulation , Magnetic Resonance Imaging , Speech , Humans , Male , Female , Adult , Speech/physiology , Middle Aged , Brain Neoplasms/surgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/physiopathology , Retrospective Studies , Glioma/surgery , Glioma/diagnostic imaging , Glioma/physiopathology , Young Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Multimodal Imaging
13.
Crit Rev Oncol Hematol ; 196: 104261, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395241

ABSTRACT

Adult brainstem gliomas (BSGs) are a group of rare central nervous system tumors with varying prognoses and controversial standard treatment strategies. To provide an overview of current trends, a systematic review using the PRISMA guidelines, Class of evidence (CE) and strength of recommendation (SR), was conducted. The review identified 27 studies. Surgery was found to have a positive impact on survival, particularly for focal lesions with CE II SR C. Stereotactic image-guided biopsy was recommended when resective surgery was not feasible with CE II and SR B. The role of systemic treatments remains unclear. Eight studies provided molecular biology data. This review gathers crucial literature on diagnosis and management of adult BSGs. It provides evidence-based guidance with updated recommendations for diagnosing and treating, taking into account recent molecular and genetic advancements. The importance of brain biopsy is emphasized to optimize treatment using emerging genetic-molecular findings and explore potential targeted therapies.


Subject(s)
Brain Neoplasms , Brain Stem Neoplasms , Glioma , Adult , Humans , Brain Stem Neoplasms/diagnosis , Brain Stem Neoplasms/therapy , Brain Stem Neoplasms/pathology , Glioma/diagnosis , Glioma/therapy , Glioma/pathology , Prognosis , Biopsy , Brain Neoplasms/pathology
14.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38255797

ABSTRACT

Craniopharyngiomas present unique challenges in surgical management due to their proximity to critical neurovascular structures. This systematic review investigates genetic and immunological markers as potential targets for therapy in craniopharyngiomas, assessing their involvement in tumorigenesis, and their influence on prognosis and treatment strategies. The systematic review adhered to PRISMA guidelines, with a thorough literature search conducted on PubMed, Ovid MED-LINE, and Ovid EMBASE. Employing MeSH terms and Boolean operators, the search focused on craniopharyngiomas, targeted or molecular therapy, and clinical outcomes or adverse events. Inclusion criteria encompassed English language studies, clinical trials (randomized or non-randomized), and investigations into adamantinomatous or papillary craniopharyngiomas. Targeted therapies, either standalone or combined with chemotherapy and/or radiotherapy, were examined if they included clinical outcomes or adverse event analysis. Primary outcomes assessed disease response through follow-up MRI scans, categorizing responses as follows: complete response (CR), near-complete response (NCR), partial response, and stable or progressive disease based on lesion regression percentages. Secondary outcomes included treatment type and duration, as well as adverse events. A total of 891 papers were initially identified, of which 26 studies spanning from 2000 to 2023 were finally included in the review. Two tables highlighted adamantinomatous and papillary craniopharyngiomas, encompassing 7 and 19 studies, respectively. For adamantinomatous craniopharyngiomas, Interferon-2α was the predominant targeted therapy (29%), whereas dabrafenib took precedence (70%) for papillary craniopharyngiomas. Treatment durations varied, ranging from 1.7 to 28 months. Positive responses, including CR or NCR, were observed in both types of craniopharyngiomas (29% CR for adamantinomatous; 32% CR for papillary). Adverse events, such as constitutional symptoms and skin changes, were reported, emphasizing the need for vigilant monitoring and personalized management to enhance treatment tolerability. Overall, the data highlighted a diverse landscape of targeted therapies with encouraging responses and manageable adverse events, underscoring the importance of ongoing research and individualized patient care in the exploration of treatment options for craniopharyngiomas. In the realm of targeted therapies for craniopharyngiomas, tocilizumab and dabrafenib emerged as prominent choices for adamantinomatous and papillary cases, respectively. While adverse events were common, their manageable nature underscored the importance of vigilant monitoring and personalized management. Acknowledging limitations, future research should prioritize larger, well-designed clinical trials and standardized treatment protocols to enhance our understanding of the impact of targeted therapies on craniopharyngioma patients.


Subject(s)
Ameloblastoma , Craniopharyngioma , Pituitary Neoplasms , Humans , Craniopharyngioma/drug therapy , Craniopharyngioma/genetics , Imidazoles , Oximes , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/genetics
15.
Neuroimage Clin ; 41: 103561, 2024.
Article in English | MEDLINE | ID: mdl-38176362

ABSTRACT

Plasticity could take place as a compensatory process following brain glioma growth. Only a few studies specifically explored plasticity in patients affected by a glioma invading the left insula; even more, plasticity of the insular cortex in task-based functional language network is almost unexplored. In the current study, we explored potential plasticity in a consecutive series of 22 patients affected by a glioma centered to the left insula, by comparing their preoperative object-naming functional network with that of a group of healthy controls. After having controlled for demographic variables, fMRI results showed that patients vs. controls activated a cluster in the right, contralesional pars triangularis including the Broca's area. On the other hand, controls did not significantly activate any brain region more than patients. At behavioral level, patients retained a generally preserved naming performance as well as a proficient language processing profile. These findings suggest that involvement of language-specific areas in the healthy hemisphere could help compensate for the left, affected insula, thus allowing preservation of the naming functions. Results are commented in relation to lesion site, naming performance, and potential relevance for neurosurgery.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Insular Cortex , Glioma/diagnostic imaging , Glioma/surgery , Glioma/pathology , Brain , Magnetic Resonance Imaging , Brain Mapping/methods
16.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38255798

ABSTRACT

High-grade glial tumors (HGGs) exhibit aggressive growth patterns and high recurrence rates. The prevailing treatment approach comprises radiation therapy (RT), chemotherapy (CMT), and surgical resection. Despite the progress made in traditional treatments, the outlook for patients with HGGs remains bleak. Tumor metabolism is emerging as a potential target for glioma therapies, a promising approach that harnesses the metabolism to target tumor cells. However, the efficacy of therapies targeting the metabolism of HGGs remains unclear, compelling a comprehensive review. This study aimed to assess the outcome of present trials on HGG therapies targeting metabolism. A comprehensive search of PubMed, Ovid MEDLINE, and Ovid EMBASE was conducted until November 2023. The search method used pertinent Medical Subject Heading (MeSH) terminologies and keywords referring to "high-grade gliomas", "metabolism", "target therapies", "monoclonal antibodies", "overall survival", and "progression-free survival". The review analyzed studies that focused on therapies targeting the metabolism of HGGs in human subjects. These studies included both randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs). Out of 284 articles identified, 23 trials met the inclusion criteria and were thoroughly analyzed. Phase II trials were the most numerous (62%). Targeted metabolic therapies were predominantly used for recurrent HGGs (67%). The most common targeted pathways were the vascular endothelial growth factor (VEGF, 43%), the human epidermal growth factor receptor (HER, 22%), the platelet-derived growth factor (PDGF, 17%), and the mammalian target of rapamycin (mTOR, 17%). In 39% of studies, the subject treatment was combined with CMT (22%), RT (4%), or both (13%). The median OS widely ranged from 4 to 26.3 months, while the median PFS ranged from 1.5 to 13 months. This systematic literature review offers a thorough exploration of the present state of metabolic therapies for HGGs. The multitude of targeted pathways underscores the intricate nature of addressing the metabolic aspects of these tumors. Despite existing challenges, these findings provide valuable insights, guiding future research endeavors. The results serve as a foundation for refining treatment strategies and enhancing patient outcomes within the complex landscape of HGGs.


Subject(s)
Glioma , Humans , Glioma/drug therapy , Neuroglia , Aggression , Antibodies, Monoclonal , ErbB Receptors , Platelet-Derived Growth Factor
17.
Epilepsy Behav ; 151: 109642, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38242066

ABSTRACT

OBJECTIVES: To characterize a profile for patients with tumor-related epilepsy presenting olfactory auras. MATERIALS AND METHODS: We conducted a monocentric, retrospective study on patients who underwent surgery in the Neurosurgery Unit of Udine University Hospital (Udine, Italy), between the 1st of January 2010 and the 1st of January 2019, for primary brain tumors (PBTs) involving the temporal lobe and the insula. All patients were affected by tumor-related epilepsy; the study group presented olfactory auras as well. We collected neuroradiological, neuropsychological and neurophysiological data from patients' medical charts. RESULTS: The subtraction analysis of MRI data shows maximum lesion overlay in left olfactory cortex, left and right hippocampus, left amygdala, right rolandic operculum, right inferior frontal gyrus and right middle temporal gyrus. The presence of olfactory auras did not influence seizure outcome (p = 0.500) or tumor recurrence after surgery (p = 0.185). The type of auras (elementary vs. complex), also, did not influence seizure control (p = 0.222). DISCUSSION: In presence of olfactory auras, anterior and mesial temporal regions are mainly involved, such as olfactory cortex, amygdala, and anterior hippocampus, together with right rolandic operculum, right inferior frontal gyrus and right middle temporal gyrus, suggesting their possible role in the genesis of olfactory auras. Post-surgical seizure outcome and disease relapse are not influenced by neither the presence nor the type of olfactory auras. CONCLUSIONS: Olfactory auras are rare event, however they may be often underestimated by the patients and under-investigated by the clinicians, even when their occurrence can represent a useful localizing tool.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Neoplasms , Humans , Epilepsy, Temporal Lobe/surgery , Odorants , Retrospective Studies , Epilepsy/complications , Epilepsy/diagnostic imaging , Seizures , Magnetic Resonance Imaging , Recurrence , Electroencephalography
18.
Genes (Basel) ; 14(12)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38137014

ABSTRACT

Optic neuritis (ON) is an inflammatory condition affecting the optic nerve, leading to vision impairment and potential vision loss. This manuscript aims to provide a comprehensive review of the current understanding of ON, including its definition, epidemiology, physiology, genetics, molecular pathways, therapy, ongoing clinical studies, and future perspectives. ON is characterized by inflammation of the optic nerve, often resulting from an autoimmune response. Epidemiological studies have shown a higher incidence in females and an association with certain genetic factors. The physiology of ON involves an immune-mediated attack on the myelin sheath surrounding the optic nerve, leading to demyelination and subsequent impairment of nerve signal transmission. This inflammatory process involves various molecular pathways, including the activation of immune cells and the release of pro-inflammatory cytokines. Genetic factors play a significant role in the susceptibility to ON. Several genes involved in immune regulation and myelin maintenance have been implicated in the disease pathogenesis. Understanding the genetic basis can provide insights into disease mechanisms and potential therapeutic targets. Therapy for ON focuses on reducing inflammation and promoting nerve regeneration. Future perspectives involve personalized medicine approaches based on genetic profiling, regenerative therapies to repair damaged myelin, and the development of neuroprotective strategies. Advancements in understanding molecular pathways, genetics, and diagnostic tools offer new opportunities for targeted therapies and improved patient outcomes in the future.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Optic Neuritis , Animals , Female , Humans , Encephalomyelitis, Autoimmune, Experimental/pathology , Optic Neuritis/genetics , Optic Neuritis/therapy , Optic Nerve/pathology , Inflammation/metabolism , Cytokines/metabolism
19.
J Pers Med ; 13(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38138853

ABSTRACT

Given the increasingly important role that the use of artificial intelligence algorithms is taking on in the medical field today (especially in oncology), the purpose of this systematic review is to analyze the main reports on such algorithms applied for the prognostic evaluation of patients with head and neck malignancies. The objective of this paper is to examine the currently available literature in the field of artificial intelligence applied to head and neck oncology, particularly in the prognostic evaluation of the patient with this kind of tumor, by means of a systematic review. The paper exposes an overview of the applications of artificial intelligence in deriving prognostic information related to the prediction of survival and recurrence and how these data may have a potential impact on the choice of therapeutic strategy, making it increasingly personalized. This systematic review was written following the PRISMA 2020 guidelines.

20.
J Clin Med ; 12(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37959312

ABSTRACT

BACKGROUND: Meckel's cave is a challenging surgical target due to its deep location and proximity to vital neurovascular structures. Surgeons have developed various microsurgical transcranial approaches (MTAs) to access it, but there is no consensus on the best method. Newer endoscopic approaches have also emerged. This study seeks to quantitatively compare these surgical approaches to Meckel's cave, offering insights into surgical volumes and exposure areas. METHODS: Fifteen surgical approaches were performed bilaterally in six specimens, including the pterional approach (PTA), fronto-temporal-orbito-zygomatic approach (FTOZA), subtemporal approach (STA), Kawase approach (KWA), retrosigmoid approach (RSA), retrosigmoid approach with suprameatal extension (RSAS), endoscopic endonasal transpterygoid approach (EETPA), inferolateral transorbital approach (ILTEA) and superior eyelid approach (SEYA). All the MTAs were performed both with 10 mm and 15 mm of brain retraction, to consider different percentages of surface exposure. A dedicated navigation system was used to quantify the surgical working volumes and exposure of different areas of Meckel's cave (ApproachViewer, part of GTx-Eyes II, University Health Network, Toronto, Canada). Microsurgical transcranial approaches were quantified with two different degrees of brain retraction (10 mm and 15 mm). Statistical analysis was performed using a mixed linear model with bootstrap resampling. RESULTS: The RSAS with 15 mm of retraction offered the maximum exposure of the trigeminal stem (TS). If compared to the KWA, the RSA exposed more of the TS (69% vs. 46%; p = 0.01). The EETPA and ILTEA exposed the Gasserian ganglion (GG) mainly in the anteromedial portion, but with a significant 20% gain in exposure provided by the EETPA compared to ILTEA (42% vs. 22%; p = 0.06). The STA with 15 mm of retraction offered the maximum exposure of the GG, with a significant gain in exposure compared to the STA with 10 mm of retraction (50% vs. 35%; p = 0.03). The medial part of the three trigeminal branches was mainly exposed by the EETPA, particularly for the ophthalmic (66%) and maxillary (83%) nerves. The EETPA offered the maximum exposure of the medial part of the mandibular nerve, with a significant gain in exposure compared to the ILTEA (42% vs. 11%; p = 0.01) and the SEY (42% vs. 2%; p = 0.01). The FTOZA offered the maximum exposure of the lateral part of the ophthalmic nerve, with a significant gain of 67% (p = 0.03) and 48% (p = 0.04) in exposure compared to the PTA and STA, respectively. The STA with 15 mm of retraction offered the maximum exposure of the lateral part of the maxillary nerve, with a significant gain in exposure compared to the STA with 10 mm of retraction (58% vs. 45%; p = 0.04). The STA with 15 mm of retraction provided a significant exposure gain of 23% for the lateral part of the mandibular nerve compared to FTOZA with 15 mm of retraction (p = 0.03). CONCLUSIONS: The endoscopic approaches, through the endonasal and transorbital routes, can provide adequate exposure of Meckel's cave, especially for its more medial portions, bypassing the impediment of major neurovascular structures and significant brain retraction. As far as the most lateral portion of Meckel's cave, MTA approaches still seem to be the gold standard in obtaining optimal exposure and adequate surgical volumes.

SELECTION OF CITATIONS
SEARCH DETAIL
...