Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biochemistry ; 44(6): 1894-908, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15697215

ABSTRACT

Structural and electronic changes (oxidation states) of the Mn(4)Ca complex of photosystem II (PSII) in the water oxidation cycle are of prime interest. For all four transitions between semistable S-states (S(0) --> S(1), S(1) --> S(2), S(2) --> S(3), and S(3),(4) --> S(0)), oxidation state and structural changes of the Mn complex were investigated by X-ray absorption spectroscopy (XAS) not only at 20 K but also at room temperature (RT) where water oxidation is functional. Three distinct experimental approaches were used: (1) illumination-freeze approach (XAS at 20 K), (2) flash-and-rapid-scan approach (RT), and (3) a novel time scan/sampling-XAS method (RT) facilitating particularly direct monitoring of the spectral changes in the S-state cycle. The rate of X-ray photoreduction was quantitatively assessed, and it was thus verified that the Mn ions remained in their initial oxidation state throughout the data collection period (>90%, at 20 K and at RT, for all S-states). Analysis of the complete XANES and EXAFS data sets (20 K and RT data, S(0)-S(3), XANES and EXAFS) obtained by the three approaches leads to the following conclusions. (i) In all S-states, the gross structural and electronic features of the Mn complex are similar at 20 K and room temperature. There are no indications for significant temperature-dependent variations in structure, protonation state, or charge localization. (ii) Mn-centered oxidation likely occurs on each of the three S-state transitions, leading to the S(3) state. (iii) Significant structural changes are coupled to the S(0) --> S(1) and the S(2) --> S(3) transitions which are identified as changes in the Mn-Mn bridging mode. We propose that in the S(2) --> S(3) transition a third Mn-(mu-O)(2)-Mn unit is formed, whereas the S(0) --> S(1) transition involves deprotonation of a mu-hydroxo bridge. In light of these results, the mechanism of accumulation of four oxidation equivalents by the Mn complex and possible implications for formation of the O-O bond are considered.


Subject(s)
Manganese/chemistry , Photosystem II Protein Complex/chemistry , Temperature , Water/chemistry , Freezing , Manganese/metabolism , Oxidation-Reduction , Photolysis , Photosystem II Protein Complex/metabolism , Spectrum Analysis/methods , Spinacia oleracea , Structure-Activity Relationship , Water/metabolism , X-Rays
2.
Biochim Biophys Acta ; 1503(1-2): 24-39, 2001 Jan 05.
Article in English | MEDLINE | ID: mdl-11115622

ABSTRACT

Using X-ray absorption spectroscopy (XAS), relevant information on structure and oxidation state of the water-oxidizing Mn complex of photosystem II has been obtained for all four semi-stable intermediate states of its catalytic cycle. We summarize our recent XAS results and discuss their mechanistic implications. The following aspects are covered: (a) information content of X-ray spectra (pre-edge feature, edge position, extended X-ray absorption fine-structure (EXAFS), dichroism in the EXAFS of partially oriented samples); (b) S(1)-state structure; (c) X-ray edge results on oxidation state changes; (d) EXAFS results on structural changes during the S-state cycle; (e) a structural model for the Mn complex in its S(3)-state; (f) XAS-based working model for the S(2)-S(3) transition; (g) XAS-based working model for the S(0)-S(1) transition; (h) potential role of hydrogen atom abstraction by the Mn complex. Finally, we present a specific hypothesis on the mechanism of dioxygen formation during the S(3)-(S(4))-S(0) transition. According to this hypothesis, water oxidation is facilitated by manganese reduction that is coupled to proton transfer from a substrate water to bridging oxides.


Subject(s)
Organometallic Compounds/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Electron Probe Microanalysis , Electron Spin Resonance Spectroscopy , Fourier Analysis , Models, Molecular , Molecular Structure , Oxidation-Reduction , Oxygen/chemistry , Photosynthesis , Photosystem II Protein Complex , Water/chemistry
3.
J Biol Chem ; 275(39): 30058-63, 2000 Sep 29.
Article in English | MEDLINE | ID: mdl-10878021

ABSTRACT

We analyzed a eukaryotically encoded rubredoxin from the cryptomonad Guillardia theta and identified additional domains at the N- and C-termini in comparison to known prokaryotic paralogous molecules. The cryptophytic N-terminal extension was shown to be a transit peptide for intracellular targeting of the protein to the plastid, whereas a C-terminal domain represents a membrane anchor. Rubredoxin was identified in all tested phototrophic eukaryotes. Presumably facilitated by its C-terminal extension, nucleomorph-encoded rubredoxin (nmRub) is associated with the thylakoid membrane. Association with photosystem II (PSII) was demonstrated by co-localization of nmRub and PSII membrane particles and PSII core complexes and confirmed by comparative electron paramagnetic resonance measurements. The midpoint potential of nmRub was determined as +125 mV, which is the highest redox potential of all known rubredoxins. Therefore, nmRub provides a striking example of the ability of the protein environment to tune the redox potentials of metal sites, allowing for evolutionary adaption in specific electron transport systems, as for example that coupled to the PSII pathway.


Subject(s)
Cell Nucleus/genetics , Chloroplasts/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Rubredoxins/isolation & purification , Biological Transport , Cell Compartmentation , Chloroplasts/ultrastructure , Eukaryota/chemistry , Eukaryota/ultrastructure , Eukaryotic Cells , Pisum sativum , Photosystem II Protein Complex , Protein Sorting Signals , Rubredoxins/metabolism
4.
Biochemistry ; 37(49): 17112-9, 1998 Dec 08.
Article in English | MEDLINE | ID: mdl-9860823

ABSTRACT

By application of microsecond light flashes the oxygen-evolving complex (OEC) was driven through its functional cycle, the S-state cycle. The S-state population distribution obtained by the application of n flashes (n = 0. 6) was determined by analysis of EPR spectra; Mn K-edge X-ray absorption spectra were collected. Taking into consideration the likely statistical error in the data and the variability stemming from the use of three different approaches for the determination of edge positions, we obtained an upshift of the edge position by 0.8-1.5, 0.5-0.9, and 0.6-1.3 eV for the S0-S1, S1-S2, and S2-S3 transitions, respectively, and a downshift by 2.3-3.1 eV for the S3-S0 transition. These results are highly suggestive of Mn oxidation state changes for all four S-state transitions. In the S0-state spectrum, a clearly resolved shoulder in the X-ray spectrum around 6555 eV points toward the presence of Mn(II). We propose that photosynthetic oxygen evolution involves cycling of the photosystem II manganese complex through four distinct oxidation states of this tetranuclear complex: Mn(II)-Mn(III)-Mn(IV)2 in the S0-state, Mn(III)2-Mn(IV)2 in the S1-state, Mn(III)1-Mn(IV)3 in the S2-state, and Mn(IV)4 in the S3-state.


Subject(s)
Intracellular Membranes/chemistry , Manganese/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Water/chemistry , Chloroplasts/chemistry , Electron Spin Resonance Spectroscopy , Oxidation-Reduction , Photolysis , Photosystem II Protein Complex , Spectrum Analysis , Spinacia oleracea , X-Rays
5.
Biochemistry ; 37(20): 7340-50, 1998 May 19.
Article in English | MEDLINE | ID: mdl-9585548

ABSTRACT

X-ray absorption spectroscopy at the Mn K-edge has been performed on multilayers of photosystem II-enriched fragments of the native thylakoid membrane prepared from a higher plant (spinach) and a unicellular green alga (Scenedesmus obliquus). Spectra collected for various angles between the prevailing orientation of the thylakoid membrane normal and the X-ray electric field vector contain information on the atomic structure of the tetranuclear manganese complex of photosystem II (PS II) and its orientation with respect to the membrane normal. The previously used approach for evaluation of the dichroism of extended X-ray absorption fine structure (EXAFS) spectra [George, G. N., et al. (1989) Science 243, 789-791] is modified, and the following results are obtained for PS II in its dark-stable state (S1-state): (1) structure and orientation of the PS II manganese complexes of green algae and higher plants are highly similiar or fully identical; (2) two 2.7-A vectors, which, most likely, connect the Mn nuclei of a planar Mn2(mu-O2) structure, are at an average angle of 80 degrees +/- 10 degrees with respect to the thylakoid normal; (3) the plane of the Mn2(mu-O2) structures is rather in parallel with the thylakoid plane than perpendicular. Structural models for the oxygen-evolving manganese complex and its orientation in the thylakoid membrane are discussed within the context of the presented results.


Subject(s)
Chlorophyta/chemistry , Intracellular Membranes/chemistry , Manganese/chemistry , Oxygen/metabolism , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosystem II Protein Complex , Spinacia oleracea/chemistry , Chloroplasts/chemistry , Cytochrome b Group/chemistry , Electron Spin Resonance Spectroscopy , Fourier Analysis , Linear Energy Transfer , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL
...