Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Antimicrob Agents Chemother ; 68(5): e0172723, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38587392

ABSTRACT

Antiviral susceptibility of influenza viruses was assessed using a high-content imaging-based neutralization test. Cap-dependent endonuclease inhibitors, baloxavir and AV5116, were superior to AV5115 against type A viruses, and AV5116 was most effective against PA mutants tested. However, these three inhibitors displayed comparable activity (EC50 8-22 nM) against type C viruses from six lineages. Banana lectin and a monoclonal antibody, YA3, targeting the hemagglutinin-esterase protein effectively neutralized some, but not all, type C viruses.


Subject(s)
Antiviral Agents , Dibenzothiepins , Triazines , Antiviral Agents/pharmacology , Humans , Triazines/pharmacology , Dibenzothiepins/pharmacology , Gammainfluenzavirus/drug effects , Gammainfluenzavirus/genetics , Morpholines/pharmacology , Pyridones/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Madin Darby Canine Kidney Cells , Dogs , Cyclopropanes/pharmacology , Influenza A virus/drug effects , Neutralization Tests , Pyridines/pharmacology
2.
Antiviral Res ; 217: 105701, 2023 09.
Article in English | MEDLINE | ID: mdl-37567255

ABSTRACT

Neuraminidase inhibitors (NAIs) are recommended for influenza treatment and prevention worldwide. The most widely prescribed NAI is oral oseltamivir, while inhaled zanamivir is less commonly used. Using phenotypic neuraminidase (NA) enzymatic assays and molecular modeling approaches, we examined the ability of the investigational orally-dosed NAI AV5080 to inhibit viruses of the influenza A(H1N1)pdm09, A(H3N2), A(H5N1), and A(H7N9) subtypes and the influenza B/Victoria- and B/Yamagata-lineages containing NA substitutions conferring oseltamivir or zanamivir resistance including: NA-R292K, NA-E119G/V, NA-H274Y, NA-I122L/N, and NA-R150K. Broadly, AV5080 showed enhanced in vitro efficacy when compared with oseltamivir and/or zanamivir. Reduced AV5080 inhibition was determined for influenza A viruses with NA-E119G and NA-R292K, and for B/Victoria-lineage viruses with NA-I122N/L and B/Yamagata-lineage virus with NA-R150K. Molecular modeling suggested loss of the short hydrogen bond to the carboxyl group of AV5080 affected inhibition of NA-R292K viruses, whereas loss of the salt bridge with the guanidine group of AV5080 affected inhibition of NA-E119G. The resistance profiles and predicted binding modes of AV5080 and zanamivir are most similar, but dissimilar to those of oseltamivir, in part because of a guanidine moiety compensatory binding effect. Overall, our data suggests that AV5080 is a promising orally-dosed NAI that exhibited similar or superior in vitro efficacy against viruses with reduced or highly reduced inhibition phenotypes with respect to currently approved NAIs.


Subject(s)
Herpesvirus 1, Cercopithecine , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza, Human , Humans , Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Enzyme Inhibitors/pharmacology , Guanidine/metabolism , Guanidines/metabolism , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype , Influenza, Human/virology , Neuraminidase/genetics , Oseltamivir/pharmacology , Zanamivir/pharmacology
3.
Int J Mol Sci ; 24(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446350

ABSTRACT

Aprotinin (APR) was discovered in 1930. APR is an effective pan-protease inhibitor, a typical "magic shotgun". Until 2007, APR was widely used as an antithrombotic and anti-inflammatory drug in cardiac and noncardiac surgeries for reduction of bleeding and thus limiting the need for blood transfusion. The ability of APR to inhibit proteolytic activation of some viruses leads to its use as an antiviral drug for the prevention and treatment of acute respiratory virus infections. However, due to incompetent interpretation of several clinical trials followed by incredible controversy in the literature, the usage of APR was nearly stopped for a decade worldwide. In 2015-2020, after re-analysis of these clinical trials' data the restrictions in APR usage were lifted worldwide. This review discusses antiviral mechanisms of APR action and summarizes current knowledge and prospective regarding the use of APR treatment for diseases caused by RNA-containing viruses, including influenza and SARS-CoV-2 viruses, or as a part of combination antiviral treatment.


Subject(s)
COVID-19 , Respiration Disorders , Humans , Aprotinin/pharmacology , Aprotinin/therapeutic use , SARS-CoV-2 , Prospective Studies , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Respiration Disorders/drug therapy
4.
Antiviral Res ; 217: 105679, 2023 09.
Article in English | MEDLINE | ID: mdl-37494978

ABSTRACT

Clade 2.3.4.4b highly pathogenic avian influenza (HPAI) A(H5N1) viruses that are responsible for devastating outbreaks in birds and mammals pose a potential threat to public health. Here, we evaluated their susceptibility to influenza antivirals. Of 1,015 sequences of HPAI A(H5N1) viruses collected in the United States during 2022, eight viruses (∼0.8%) had a molecular marker of drug resistance to an FDA-approved antiviral: three adamantane-resistant (M2-V27A), four oseltamivir-resistant (NA-H275Y), and one baloxavir-resistant (PA-I38T). Additionally, 31 viruses contained mutations that may reduce susceptibility to inhibitors of neuraminidase (NA) (n = 20) or cap-dependent endonuclease (CEN) (n = 11). A panel of 22 representative viruses was tested phenotypically. Overall, clade 2.3.4.4b A(H5N1) viruses lacking recognized resistance mutations were susceptible to FDA-approved antivirals. Oseltamivir was least potent at inhibiting NA activity, while the investigational NA inhibitor AV5080 was most potent, including against NA mutants. A novel NA substitution T438N conferred 12-fold reduced inhibition by zanamivir, and in combination with the known marker N295S, synergistically affected susceptibility to all five NA inhibitors. In cell culture-based assays HINT and IRINA, the PA-I38T virus displayed 75- to 108-fold and 37- to 78-fold reduced susceptibility to CEN inhibitors, baloxavir and the investigational AV5116, respectively. Viruses with PA-I38M or PA-A37T showed 5- to 10-fold reduced susceptibilities. As HPAI A(H5N1) viruses continue to circulate and evolve, close monitoring of drug susceptibility is needed for risk assessment and to inform decisions regarding antiviral stockpiling.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Animals , United States/epidemiology , Antiviral Agents/pharmacology , Oseltamivir/pharmacology , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/epidemiology , Enzyme Inhibitors/pharmacology , Birds , Mammals , Drug Resistance, Viral/genetics , Neuraminidase
5.
Molecules ; 27(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35956925

ABSTRACT

The efficacy of aprotinin combinations with selected antiviral-drugs treatment of influenza virus and coronavirus (SARS-CoV-2) infection was studied in mice models of influenza pneumonia and COVID-19. The high efficacy of the combinations in reducing virus titer in lungs and body weight loss and in increasing the survival rate were demonstrated. This preclinical study can be considered a confirmatory step before introducing the combinations into clinical assessment.


Subject(s)
COVID-19 Drug Treatment , Influenza, Human , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Aprotinin/therapeutic use , Humans , Influenza, Human/drug therapy , Mice , SARS-CoV-2
6.
J Psychiatr Res ; 143: 436-444, 2021 11.
Article in English | MEDLINE | ID: mdl-34656876

ABSTRACT

Generalized anxiety disorder (GAD) is associated with an imbalance in the functioning of the stimulating neurotransmitter systems in human's brain. We studied the safety and therapeutic efficacy of aviandr, the new noradrenergic and specific serotonergic antidepressant, for GAD patients in the phase II, double-blind, placebo-controlled, randomized, multicenter, pilot trial at 17 clinical sites of the Russian Federation. 129 eligible patients were 18 years and older and met the criteria for GAD diagnosis. The patients were randomly assigned (1:1:1) to receive oral aviandr at daily dose of 40 mg (cohort 1, n = 41) or 60 mg (cohort 2, n = 43) or placebo (cohort 3, n = 43) for 8 weeks. The patients were assessed by the Hamilton anxiety scale (HAM-A), Hamilton Depression Scale (HAM-D), Clinical Global Impression Scale (CGI-S), Visual Analogue Scale and vital signs. At week 8, the decreases of the HAM-A score were achieved in 53∙7%, 47∙7% and 16∙3% in cohorts 1, 2 and 3, respectively. Changes of HAM-A, HAM-D, CGI-S, and CGI-I scores in aviandr-treated patients were superior to placebo (p < 0∙001). The psychic components of anxiety decreased on the first day, throughout the 8 weeks of treatment and on a follow-up week after aviandr discontinuation. Aviandr (40 mg daily dose) reduced drowsiness compared to baseline, was safe, well-tolerated and did not cause serious or severe adverse events or signs of withdrawal syndrome within one week after treatment completion. Aviandr at both 40 and 60 mg daily doses demonstrated therapeutic efficacy in GAD patients over placebo.


Subject(s)
Antidepressive Agents , Anxiety Disorders , Antidepressive Agents/therapeutic use , Anxiety/drug therapy , Anxiety Disorders/drug therapy , Double-Blind Method , Humans , Pilot Projects , Psychiatric Status Rating Scales , Treatment Outcome
7.
Viruses ; 13(7)2021 06 27.
Article in English | MEDLINE | ID: mdl-34199134

ABSTRACT

COVID-19 is a contagious multisystem inflammatory disease caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We studied the efficacy of Aprotinin (nonspecific serine proteases inhibitor) in combination with Avifavir® or Hydroxychloroquine (HCQ) drugs, which are recommended by the Russian Ministry of Health for the treatment therapy of moderate COVID-19 patients. This prospective single-center study included participants with moderate COVID-19-related pneumonia, laboratory-confirmed SARS-CoV-2, and admitted to the hospitals. Patients received combinations of intravenous (IV) Aprotinin (1,000,000 KIU daily, 3 days) and HCQ (cohort 1), inhalation (inh) treatment with Aprotinin (625 KIU four times per day, 5 days) and HCQ (cohort 2) or IV Aprotinin (1,000,000 KIU daily for 5 days) and Avifavir (cohort 3). In cohorts 1-3, the combination therapy showed 100% efficacy in preventing the transfer of patients (n = 30) to the intensive care unit (ICU). The effect of the combination therapy in cohort 3 was the most prominent, and the median time to SARS-CoV-2 elimination was 3.5 days (IQR 3.0-4.0), normalization of the CRP concentration was 3.5 days (IQR 3-5), of the D-dimer concentration was 5 days (IQR 4 to 5); body temperature was 1 day (IQR 1-3), improvement in clinical status or discharge from the hospital was 5 days (IQR 5-5), and improvement in lung lesions of patients on 14 day was 100%.


Subject(s)
Antiviral Agents/therapeutic use , Aprotinin/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Adolescent , Adult , Aged , Cohort Studies , Drug Therapy, Combination , Female , Hospitalization , Humans , Hydroxychloroquine/therapeutic use , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Pneumonia, Viral/drug therapy , Prospective Studies , Russia , Treatment Outcome , Young Adult
8.
J Antimicrob Chemother ; 76(4): 1010-1018, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33367751

ABSTRACT

BACKGROUND: The development and clinical implementation of the cap-dependent endonuclease (CEN) inhibitor baloxavir marboxil was a breakthrough in influenza therapy, but it was associated with the emergence of drug-resistant variants. OBJECTIVES: To design and synthesize structural analogues of CEN inhibitors and evaluate their safety, pharmacokinetics and antiviral potency in vitro and in vivo. METHODS: The drug candidate AV5124 and its active metabolite AV5116 were synthesized based on pharmacophore modelling. Stability in plasma and microsomes, plasma protein binding, cytotoxicity and antiviral activities were assessed in vitro. Pharmacokinetics after IV or oral administration were analysed in CD-1 mice. Acute toxicity and protective efficacy against lethal A(H1N1)pdm09 influenza virus challenge were examined in BALB/c mice. RESULTS: Pharmacophore model-assisted, 3D molecular docking predicted key supramolecular interactions of the metal-binding group and bulky hydrophobic group of AV5116 with the CEN binding site (Protein Data Bank code: 6FS6) that are essential for high antiviral activity. AV5116 inhibited influenza virus polymerase complexes in cell-free assays and replication of oseltamivir-susceptible and -resistant influenza A and B viruses at nanomolar concentrations. Notably, AV5116 was equipotent or more potent than baloxavir acid (BXA) against WT (I38-WT) viruses and viruses with reduced BXA susceptibility carrying an I38T polymerase acidic (PA) substitution. AV5116 exhibited low cytotoxicity in Madin-Darby canine kidney cells and lacked mitochondrial toxicity, resulting in favourable selective indices. Treatment with 20 or 50 mg/kg AV5124 prevented death in 60% and 100% of animals, respectively. CONCLUSIONS: Overall, AV5124 and A5116 are promising inhibitors of the influenza virus CEN and warrant further development as potent anti-influenza agents.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dibenzothiepins , Dogs , Endonucleases , Humans , Influenza, Human/drug therapy , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Morpholines , Pyridones , Triazines
9.
Clin Infect Dis ; 73(3): 531-534, 2021 08 02.
Article in English | MEDLINE | ID: mdl-32770240

ABSTRACT

In May 2020 the Russian Ministry of Health granted fast-track marketing authorization to RNA polymerase inhibitor AVIFAVIR (favipiravir) for the treatment of COVID-19 patients. In the pilot stage of Phase II/III clinical trial, AVIFAVIR enabled SARS-CoV-2 viral clearance in 62.5% of patients within 4 days, and was safe and well-tolerated. Clinical Trials Registration. NCT04434248.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , Drug Therapy, Combination , Humans , SARS-CoV-2 , Treatment Outcome
10.
Clin Infect Dis ; 73(3): e848-e849, 2021 08 02.
Article in English | MEDLINE | ID: mdl-33099607
11.
Molecules ; 25(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947763

ABSTRACT

Consecutive alkylation of 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate by CH3I has been investigated to establish regioselectivity of the reaction for reliable design and synthesis of combinatorial libraries. In the first stage, the product of S-methylation-methyl 4-hydroxy-2-(methylthio)quinoline-3-carboxylate was obtained. The subsequent alkylation with CH3I led to the formation of both O- and N-methylation products mixture-methyl 4-methoxy-2-(methylthio)quinoline-3-carboxylate and methyl 1-methyl-2-(methylthio)-4-oxo-1,4-dihydroquinoline-3-carboxylate with a predominance of O-methylated product. The structure of synthesized compounds was confirmed by means of elemental analysis, 1H-NMR, 13C-NMR, LC/MS, and single-crystal X-ray diffraction. The quantum chemical calculations of geometry and electron structure of methyl 4-hydroxy-2-(methylthio)quinoline-3-carboxylate's anion were carried out. According to molecular docking simulations, the studied compounds can be considered as potent inhibitors of Hepatitis B Virus replication. Experimental in vitro biological studies confirmed that studied compounds demonstrated high inhibition of HBV replication in 10 µM concentration.


Subject(s)
Molecular Docking Simulation , Quinolines/chemistry , Binding Sites , Capsid Proteins/antagonists & inhibitors , Capsid Proteins/metabolism , Hepatitis B virus/metabolism , Hydrocarbons, Iodinated/chemistry , Hydrogen Bonding , Methylation , Molecular Conformation , Quantum Theory , Quinolines/metabolism
12.
J Med Chem ; 63(17): 9403-9420, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787099

ABSTRACT

4-Substituted 2,4-dioxobutanoic acids inhibit influenza virus cap-dependent endonuclease (CEN) activity. Baloxavir marboxil, 4, is approved for treating influenza virus infections. We describe here the synthesis and biological evaluation of active compounds, 5a-5g, and their precursors (6a, 6b, 6d, and 6e) with flexible bulky hydrophobic groups instead of the rigid polyheterocyclic moieties. In silico docking confirmed the ability of 5a-5g to bind to the active site of influenza A CEN (PDB code: 6FS6) like baloxavir acid, 3. These novel compounds inhibited polymerase complex activity, inhibited virus replication in cells, prevented death in a lethal influenza A virus mouse challenge model, and dramatically lowered viral lung titers. 5a and 5e potently inhibited different influenza genera in vitro. Precursors 6a and 6d demonstrated impressive mouse oral bioavailability with 6a, providing effective in vivo protection. Thus, these novel compounds are potent CEN inhibitors with in vitro and in vivo activity comparable to baloxavir.


Subject(s)
Dibenzothiepins/chemistry , Dibenzothiepins/pharmacology , Endonucleases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Influenza A Virus, H1N1 Subtype/enzymology , Morpholines/chemistry , Morpholines/pharmacology , Pyridones/chemistry , Pyridones/pharmacology , Triazines/chemistry , Triazines/pharmacology , Animals , Dibenzothiepins/adverse effects , Dibenzothiepins/pharmacokinetics , Endonucleases/chemistry , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacokinetics , Female , HEK293 Cells , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Mice , Models, Molecular , Morpholines/adverse effects , Morpholines/pharmacokinetics , Protein Conformation , Pyridones/adverse effects , Pyridones/pharmacokinetics , Tissue Distribution , Triazines/adverse effects , Triazines/pharmacokinetics
13.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 1): 12-17, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31921445

ABSTRACT

The title compound, C15H22N4O5S, was prepared via alkyl-ation of 3-(chloro-meth-yl)-5-(pentan-3-yl)-1,2,4-oxa-diazole in anhydrous dioxane in the presence of tri-ethyl-amine. The thia-diazine ring has an envelope conformation with the S atom displaced by 0.4883 (6) Šfrom the mean plane through the other five atoms. The planar 1,2,4-oxa-diazole ring is inclined to the mean plane of the thia-diazine ring by 77.45 (11)°. In the crystal, mol-ecules are linked by C-H⋯N hydrogen bonds, forming chains propagating along the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the inter-molecular contacts present in the crystal. Mol-ecular docking studies were use to evaluate the title compound as a potential system that inter-acts effectively with the capsid of the Hepatitis B virus (HBV), supported by an experimental in vitro HBV replication model.

14.
Heliyon ; 5(11): e02738, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31844693

ABSTRACT

A method of 4-fluoro-3-(morpholinosulfonyl)benzo[b]thiophene-2-carboxylate synthesis has been developed and the electronic and spatial structure of a new biologically active molecule has been studied both theoretically and experimentally. The title compound was crystallized from acetonitrile and the single crystal X-ray analysis has revealed that it exists in a monoclinic P21/c space group, with one molecule in the asymmetric part of the unit cell. Hirshfeld surface analysis was used to study intermolecular interactions in the crystal. Molecular docking study evaluates the investigated compound as a new potential inhibitor of hepatitis B. Testing for anti-hepatitis B virus activity has shown that this substance demonstrates in vitro nanomolar inhibitory activity against HBV.

15.
J Alzheimers Dis ; 58(4): 1043-1063, 2017.
Article in English | MEDLINE | ID: mdl-28550249

ABSTRACT

Discovery of 5-HT6 receptor subtype and its exclusive localization within the central nervous system led to extensive investigations of its role in Alzheimer's disease, schizophrenia, and obesity. In the present study, we present preclinical evaluation of a novel highly-potent and highly-selective 5-HT6R antagonist, AVN-492. The affinity of AVN-492 to bind to 5-HT6R (Ki = 91 pM) was more than three orders of magnitude higher than that to bind to the only other target, 5-HT2BR, (Ki = 170 nM). Thus, the compound displayed great 5-HT6R selectivity against all other serotonin receptor subtypes, and is extremely specific against any other receptors such as adrenergic, GABAergic, dopaminergic, histaminergic, etc. AVN-492 demonstrates good in vitro and in vivo ADME profile with high oral bioavailability and good brain permeability in rodents. In behavioral tests, AVN-492 shows anxiolytic effect in elevated plus-maze model, prevents an apomorphine-induced disruption of startle pre-pulse inhibition (the PPI model) and reverses a scopolamine- and MK-801-induced memory deficit in passive avoidance model. No anti-obesity effect of AVN-492 was found in a murine model. The data presented here strongly indicate that due to its high oral bioavailability, extremely high selectivity, and potency to block the 5-HT6 receptor, AVN-492 is a very promising tool for evaluating the role the 5-HT6 receptor might play in cognitive and neurodegenerative impairments. AVN-492 is an excellent drug candidate to be tested for treatment of such diseases, and is currently being tested in Phase I trials.


Subject(s)
Alzheimer Disease/drug therapy , Antipsychotic Agents/therapeutic use , Drug Evaluation, Preclinical , Receptors, Serotonin/metabolism , Serotonin Antagonists/therapeutic use , Alzheimer Disease/pathology , Animals , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacology , Body Weight/drug effects , Brain/drug effects , Brain/metabolism , CHO Cells , Cricetulus , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Protein Binding/drug effects , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Rats , Rats, Wistar , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacology , Time Factors , Transfection
16.
Curr Alzheimer Res ; 14(3): 268-294, 2017.
Article in English | MEDLINE | ID: mdl-27829340

ABSTRACT

BACKGROUND: In recent years, 5-hydroxytryptamine subtype 6 receptor (5-HT6 receptor, 5- HT6R) has emerged as a promising therapeutic target for the treatment of neuropathological disorders, including Alzheimer's disease (AD) and schizophrenia. 5-HT6 receptors were hypothesized to be implicated in the processes of learning, memory, and cognition with 5-HT6R antagonists being effective in animal models of cognition and memory impairment. Several selective 5-HT6R ligands are currently undergoing clinical trials for treatment of AD. METHODS: We describe results of preclinical development of a novel and highly selective and potent 5- HT6R antagonist, AVN-322, as a clinical candidate for the treatment of AD to improve concurrent debilitation of memory and cognition in the AD patients, and schizophrenia as a substance with antipsychotic effect. In the manuscript, we present its in vitro and vivo efficacy, ADME, pharmacokinetics in animals and in humans, and toxicity. RESULTS: While having high binding affinity in medium picomolar range, the lead compound demonstrates substantially better selectivity index then the reference drug candidates currently being tested in clinical studies. AVN-322 showed high oral bioavailability and favorable blood-brain barrier (BBB) penetration. In vivo testing revealed its clear cognition enhancing effect. AVN-322 significantly restored both scopolamine- and MK-801-induced cognitive dysfunction and demonstrated antipsychotic potential. CONCLUSION: Taking into account its good safety profile and favorable pharmacokinetics, AVN-322 can be reasonably considered as a novel drug candidate for the treatment of neurological disorders such as AD and/or schizophrenia.


Subject(s)
Heterocyclic Compounds, 3-Ring/pharmacology , Memory Disorders/drug therapy , Nootropic Agents/pharmacology , Serotonin Antagonists/pharmacology , Administration, Intravenous , Administration, Oral , Alzheimer Disease/drug therapy , Animals , Antipsychotic Agents/pharmacokinetics , Antipsychotic Agents/pharmacology , Antipsychotic Agents/toxicity , Cell Line, Tumor , Disease Models, Animal , Dogs , Drug Evaluation, Preclinical , Female , HEK293 Cells , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/toxicity , Humans , Macaca mulatta , Male , Mice , Nootropic Agents/pharmacokinetics , Nootropic Agents/toxicity , Peritoneal Absorption , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Serotonin/metabolism , Schizophrenia/drug therapy , Serotonin Antagonists/pharmacokinetics , Serotonin Antagonists/toxicity
17.
Expert Opin Ther Pat ; 27(4): 401-414, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27967269

ABSTRACT

INTRODUCTION: Non-structural 5A (NS5A) protein has achieved a considerable attention as an attractive target for the treatment of hepatitis C (HCV). A number of novel NS5A inhibitors have been reported to date. Several drugs having favorable ADME properties and mild side effects were launched into the pharmaceutical market. For instance, daclatasvir was launched in 2014, elbasvir is currently undergoing registration, ledipasvir was launched in 2014 as a fixed-dose combination with sofosbuvir (NS5B inhibitor). Areas covered: Thomson integrity database and SciFinder database were used as a valuable source to collect the patents on small-molecule NS5A inhibitors. All the structures were ranked by the date of priority. Patent holder and antiviral activity for each scaffold claimed were summarized and presented in a convenient manner. A particular focus was placed on the best-in-class bis-pyrrolidine-containing NS5A inhibitors. Expert opinion: Several first generation NS5A inhibitors have recently progressed into advanced clinical trials and showed superior efficacy in reducing viral load in infected subjects. Therapy schemes of using these agents in combination with other established antiviral drugs with complementary mechanisms of action can address the emergence of resistance and poor therapeutic outcome frequently attributed to antiviral drugs.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis C/drug therapy , Viral Nonstructural Proteins/antagonists & inhibitors , Drug Design , Drug Resistance, Viral , Hepacivirus/drug effects , Hepatitis C/virology , Humans , Patents as Topic
18.
J Alzheimers Dis ; 53(2): 583-620, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27232215

ABSTRACT

Lack of efficacy of many new highly selective and specific drug candidates in treating diseases with poorly understood or complex etiology, as are many of central nervous system (CNS) diseases, encouraged an idea of developing multi-modal (multi-targeted) drugs. In this manuscript, we describe molecular pharmacology, in vitro ADME, pharmacokinetics in animals and humans (part of the Phase I clinical studies), bio-distribution, bioavailability, in vivo efficacy, and safety profile of the multimodal drug candidate, AVN-101. We have carried out development of a next generation drug candidate with a multi-targeted mechanism of action, to treat CNS disorders. AVN-101 is a very potent 5-HT7 receptor antagonist (Ki = 153 pM), with slightly lesser potency toward 5-HT6, 5-HT2A, and 5HT-2C receptors (Ki = 1.2-2.0 nM). AVN-101 also exhibits a rather high affinity toward histamine H1 (Ki = 0.58 nM) and adrenergic α2A, α2B, and α2C (Ki = 0.41-3.6 nM) receptors. AVN-101 shows a good oral bioavailability and facilitated brain-blood barrier permeability, low toxicity, and reasonable efficacy in animal models of CNS diseases. The Phase I clinical study indicates the AVN-101 to be well tolerated when taken orally at doses of up to 20 mg daily. It does not dramatically influence plasma and urine biochemistry, nor does it prolong QT ECG interval, thus indicating low safety concerns. The primary therapeutic area for AVN-101 to be tested in clinical trials would be Alzheimer's disease. However, due to its anxiolytic and anti-depressive activities, there is a strong rational for it to also be studied in such diseases as general anxiety disorders, depression, schizophrenia, and multiple sclerosis.


Subject(s)
Central Nervous System Diseases/drug therapy , Disease Models, Animal , Neuroprostanes/therapeutic use , Receptors, Serotonin/metabolism , Serotonin Antagonists/therapeutic use , Animals , Central Nervous System Diseases/blood , Central Nervous System Diseases/etiology , Dizocilpine Maleate/toxicity , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Excitatory Amino Acid Antagonists/toxicity , Humans , Maze Learning/drug effects , Protein Binding/drug effects , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacology , Time Factors
19.
Mol Pharm ; 13(3): 945-63, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26886442

ABSTRACT

Within the past decade several novel targets have been indicated as key players in Alzheimer-type dementia and associated conditions, including a "frightening" memory loss as well as severe cognitive impairments. These proteins are deeply implicated in crucial cell processes, e.g., autophagy, growth and progression, apoptosis, and metabolic equilibrium. Since recently, 5-HT6R has been considered as one of the most prominent biological targets in AD drug therapy. Therefore, we investigated the potential procognitive and neuroprotective effects of our novel selective 5-HT6R antagonist, AVN-211. During an extensive preclinical evaluation the lead compound demonstrated a relatively high therapeutic potential and improved selectivity toward 5-HT6R as compared to reference drug candidates. It was thoroughly examined in different in vivo behavioral models directly related to AD and showed evident improvements in cognition and learning. In many cases, the observed effect was considerably greater than that determined for the reported drugs and drug candidates, including memantine, SB-742457, and Lu AE58054, evaluated under the same conditions. In addition, AVN-211 showed a similar or better anxiolytic efficacy than fenobam, rufinamide, lorazepam, and buspirone in an elevated plus-maze model, elevated platform, and open field tests. The compound demonstrated low toxicity and no side effects in vivo, an appropriate pharmacokinetic profile, and stability. In conclusion, AVN-211 significantly delayed or partially halted the progressive decline in memory function associated with AD, which makes it an interesting drug candidate for the treatment of neurodegenerative and psychiatric disorders. Advanced clinical trials are currently under active discussion and in high priority.


Subject(s)
Alzheimer Disease/drug therapy , Liver/drug effects , Neuroprotective Agents/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptors, Serotonin/chemistry , Animals , Caco-2 Cells , Cell Membrane Permeability/drug effects , High-Throughput Screening Assays , Humans , Liver/metabolism , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Neuroprotective Agents/pharmacokinetics , Pyrazoles/pharmacokinetics , Pyrimidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Serotonin/metabolism , Tissue Distribution
20.
Curr Top Med Chem ; 16(12): 1383-91, 2016.
Article in English | MEDLINE | ID: mdl-26585932

ABSTRACT

In recent years, nonstructural protein 5A (NS5A) has rapidly emerged as a promising therapeutic target for Hepatitis C (HCV) virus therapy. It is involved in both viral RNA replication and virus assembly and NS5A plays a critical role in the regulation of HCV life cycle. NS5A replication complex inhibitors (NS5A RCIs) have demonstrated strong antiviral activity in vitro and in vivo. However, wild-type resistance mutations and a wide range of genotypes significantly reduce their clinical efficacy. The exact mechanism of NS5A action still remains elusive, therefore several in silico models have been constructed to gain insight into the drug binding and subsequent structural optimization to overcome resistance. This paper provides a comprehensive overview of the computational studies towards NS5A mechanism of action and the design of novel small-molecule inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Computer Simulation , Drug Design , Hepacivirus/drug effects , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...