Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287556

ABSTRACT

Molecular, cellular, and organismal alterations are important descriptors of toxic effects, but our ability to extrapolate and predict ecological risks is limited by the availability of studies that link measurable end points to adverse population relevant outcomes such as cohort survival and growth. In this study, we used laboratory gene expression and behavior data from two populations of Atlantic killifish Fundulus heteroclitus [one reference site (SCOKF) and one PCB-contaminated site (NBHKF)] to inform individual-based models simulating cohort growth and survival from embryonic exposures to environmentally relevant concentrations of neurotoxicants. Methylmercury exposed SCOKF exhibited brain gene expression changes in the si:ch211-186j3.6, si:dkey-21c1.4, scamp1, and klhl6 genes, which coincided with changes in feeding and swimming behaviors, but our models simulated no growth or survival effects of exposures. PCB126-exposed SCOKF had lower physical activity levels coinciding with a general upregulation in nucleic and cellular brain gene sets (BGS) and downregulation in signaling, nucleic, and cellular BGS. The NBHKF, known to be tolerant to PCBs, had altered swimming behaviors that coincided with 98% fewer altered BGS. Our models simulated PCB126 decreased growth in SCOKF and survival in SCOKF and NBHKF. Overall, our study provides a unique demonstration linking molecular and behavioral data to develop quantitative, testable predictions of ecological risk.

2.
Environ Toxicol Chem ; 43(10): 2122-2133, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39171730

ABSTRACT

Understanding how sublethal impacts of toxicants affect population-relevant outcomes for organisms is challenging. We tested the hypotheses that the well-known sublethal impacts of methylmercury (MeHg) and a polychlorinated biphenyl (PCB126) would have meaningful impacts on cohort growth and survival in yellow perch (Perca flavescens) and Atlantic killifish (Fundulus heteroclitus) populations, that inclusion of model uncertainty is important for understanding the sublethal impacts of toxicants, and that a model organism (zebrafish Danio rerio) is an appropriate substitute for ecologically relevant species (yellow perch, killifish). Our simulations showed that MeHg did not have meaningful impacts on growth or survival in a simulated environment except to increase survival and growth in low mercury exposures in yellow perch and killifish. For PCB126, the high level of exposure resulted in lower survival for killifish only. Uncertainty analyses increased the variability and lowered average survival estimates across all species and toxicants, providing a more conservative estimate of risk. We demonstrate that using a model organism instead of the species of interest does not necessarily give the same results, suggesting that using zebrafish as a surrogate for yellow perch and killifish may not be appropriate for predicting contaminant impacts on larval cohort growth and survival in ecologically relevant species. Our analysis also reinforces the notion that uncertainty analyses are necessary in any modeling assessment of the impacts of toxicants on a population because it provides a more conservative, and arguably realistic, estimate of impact. Environ Toxicol Chem 2024;43:2122-2133. © 2024 SETAC.


Subject(s)
Fundulidae , Methylmercury Compounds , Polychlorinated Biphenyls , Zebrafish , Animals , Zebrafish/growth & development , Polychlorinated Biphenyls/toxicity , Methylmercury Compounds/toxicity , Uncertainty , Water Pollutants, Chemical/toxicity , Perches/growth & development , Models, Biological , Risk Assessment
3.
Environ Sci Technol ; 56(6): 3514-3523, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35201763

ABSTRACT

Fish swimming behavior is a commonly measured response in aquatic ecotoxicology because behavior is considered a whole organism-level effect that integrates many sensory systems. Recent advancements in animal behavior models, such as hidden Markov chain models (HMM), suggest an improved analytical approach for toxicology. Using both new and traditional approaches, we examined the sublethal effects of PCB126 and methylmercury on yellow perch (YP) larvae (Perca flavescens) using three doses. Both approaches indicate larvae increase activity after exposure to either chemical. The middle methylmercury-dosed larvae showed multiple altered behavior patterns. First, larvae had a general increase in activity, typically performing more behavior states, more time swimming, and more swimming bouts per second. Second, when larvae were in a slow or medium swimming state, these larvae tended to switch between these states more often. Third, larvae swam slower during the swimming bouts. The upper PCB126-dosed larvae exhibited a higher proportion and a fast swimming state, but the total time spent swimming fast decreased. The middle PCB126-dosed larvae transitioned from fast to slow swimming states less often than the control larvae. These results indicate that developmental exposure to very low doses of these neurotoxicants alters YP larvae overall swimming behaviors, suggesting neurodevelopment alteration.


Subject(s)
Methylmercury Compounds , Perches , Animals , Larva , Markov Chains , Methylmercury Compounds/toxicity , Perches/physiology , Swimming
4.
Biol Invasions ; 22(8): 2473-2495, 2020.
Article in English | MEDLINE | ID: mdl-32624679

ABSTRACT

Bighead carp H. nobilis and silver carp Hypothalmichthys molitrix (collectively bigheaded carps, BHC) are invasive planktivorous fishes that threaten to enter the Laurentian Great Lakes and disrupt food webs. To assess the likelihood of BHC establishment and their likely effects on the food web of Saginaw Bay, Lake Huron, we developed a multi-species individual-based bioenergetics model that tracks individual bighead and silver carp, four key fish species, and seven prey biomass groups over 50 years. The model tracks the daily consumption, mortality and growth of all individuals and the biomass dynamics of interacting prey pools. We ran simulation scenarios to determine the likelihood of BHC establishment under initial introductions from 5 to 1 million yearling and older individuals, and assuming variable age-0 carp survival rates (high, intermediate, and low). We bounded the survival of age-0 BHC as recruitment continues to be one of the biggest unknowns. We also simulated the potential effects of an established population of 1 million bighead carp or silver carp assuming variation in age-0 survival. Results indicated that as few as 10 BHC could establish a population assuming high or intermediate age-0 survival, but at least 100,000 individuals were needed to establish a population assuming low age-0 survival. BHC had negative effects on plankton and planktivorous fish biomass, which increased with BHC density. However, piscivorous walleye Sander vitreus appeared to benefit from BHC establishment. The potential for BHC to establish and affect ecologically and economically important fish species in Saginaw Bay is a cause for concern.

SELECTION OF CITATIONS
SEARCH DETAIL