Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Dalton Trans ; 53(4): 1528-1540, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38164099

ABSTRACT

Catalytic properties of a crystalline zirconium tungstate, ZrW2O8, the material known mainly for its isotropic negative coefficient of thermal expansion, have been assessed for the liquid-phase selective oxidation of a range of organic substrates comprising CC, OH, S and other functional groups using aqueous hydrogen peroxide as the green oxidant. Samples of ZrW2O8 were prepared by hydrothermal synthesis and characterised by N2 adsorption, PXRD, SEM, EDX, FTIR and Raman spectroscopic techniques. Studies by IR spectroscopy of adsorbed probe molecules (CO and CDCl3) revealed the presence of Brønsted acidic and basic sites on the surface of ZrW2O8. It was demonstrated that ZrW2O8 is able to activate H2O2 under mild conditions and accomplish the epoxidation of CC bonds in alkenes and unsaturated ketones, oxidation of thioethers to sulfoxides and sulfones, along with the oxidation of alcoholic functions to produce ketones and aldehydes. The oxidation of tetramethylethylene and α-terpinene over ZrW2O8 revealed the formation of peroxidation products, 2,3-dimethyl-3-butene-2-hydroperoxide and endoperoxide ascaridole, respectively, indicating the involvement of singlet oxygen in the oxidation process. The ZrW2O8 catalyst preserves its structure and morphology under the turnover conditions and does not suffer from metal leaching. It can be easily recovered, regenerated by calcination, and reused without the loss of activity and selectivity.

2.
Chemistry ; 27(23): 6985-6992, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33559238

ABSTRACT

The catalytic performance of Zr-abtc and MIP-200 metal-organic frameworks consisting of 8-connected Zr6 clusters and tetratopic linkers was investigated in H2 O2 -based selective oxidations and compared with that of 12-coordinated UiO-66 and UiO-67. Zr-abtc demonstrated advantages in both substrate conversion and product selectivity for epoxidation of electron-deficient C=C bonds in α,ß-unsaturated ketones. The significant predominance of 1,2-epoxide in carvone epoxidation, coupled with high sulfone selectivity in thioether oxidation, points to a nucleophilic oxidation mechanism over Zr-abtc. The superior catalytic performance in the epoxidation of unsaturated ketones correlates with a larger amount of weak basic sites in Zr-abtc. Electrophilic activation of H2 O2 can also be realized, as evidenced by the high activity of Zr-abtc in epoxidation of the electron-rich C=C bond in caryophyllene. XRD and FTIR studies confirmed the retention of the Zr-abtc structure after the catalysis. The low activity of MIP-200 in H2 O2 -based oxidations is most likely related to its specific hydrophilicity, which disfavors adsorption of organic substrates and H2 O2 .

3.
Dalton Trans ; 49(36): 12546-12549, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32959843

ABSTRACT

The zeolite imidazolate framework ZIF-8 exhibits superior catalytic performance in the epoxidation of the electron-deficient C[double bond, length as m-dash]C bond in menadione using aqueous hydrogen peroxide as the oxidant. The catalysis has a truly heterogeneous nature and the framework structure remains intact. This is the first example of oxidation catalysis with ZIF-8.

4.
Inorg Chem ; 59(15): 10634-10649, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32686426

ABSTRACT

Zr-based metal-organic frameworks (Zr-MOF) UiO-66 and UiO-67 catalyze thioether oxidation in nonprotic solvents with unprecedentedly high selectivity toward corresponding sulfones (96-99% at ca. 50% sulfide conversion with only 1 equiv of H2O2). The reaction mechanism has been investigated using test substrates, kinetic, adsorption, isotopic (18O) labeling, and spectroscopic tools. The following facts point out a nucleophilic character of the peroxo species responsible for the superior formation of sulfones: (1) nucleophilic parameter XNu = 0.92 in the oxidation of thianthrene 5-oxide and its decrease upon addition of acid; (2) sulfone to sulfoxide ratio of 24 in the competitive oxidation of methyl phenyl sulfoxide and p-Br-methyl phenyl sulfide; (3) significantly lower initial rates of methyl phenyl sulfide oxidation relative to methyl phenyl sulfoxide (kS/kSO = 0.05); and (4) positive slope ρ = +0.42 of the Hammett plot for competitive oxidation of p-substituted aryl methyl sulfoxides. Nucleophilic activation of H2O2 on Zr-MOF is also manifested by their capability of catalyzing epoxidation of electron-deficient C═C bonds in α,ß-unsaturated ketones accompanied by oxidation of acetonitrile solvent. Kinetic modeling on methyl phenyl sulfoxide oxidation coupled with adsorption studies supports a mechanism that involves the interaction of H2O2 with Zr sites with the formation of a nucleophilic oxidizing species and release of water followed by oxygen atom transfer from the nucleophilic oxidant to sulfoxide that competes with water for Zr sites. The nucleophilic peroxo species coexists with an electrophilic one, ZrOOH, capable of oxygen atom transfer to nucleophilic sulfides. The predominance of nucleophilic activation of H2O2 over electrophilic one is, most likely, ensured by the presence of weak basic sites in Zr-MOFs identified by FTIR spectroscopy of adsorbed CDCl3 and quantified by adsorption of isobutyric acid.

5.
Front Chem ; 7: 858, 2019.
Article in English | MEDLINE | ID: mdl-31921779

ABSTRACT

In this work, we elaborated heterogeneous catalysts on the basis of the Venturello complex [PO4{WO(O2)2}4]3- (PW4) and nitrogen-free or nitrogen-doped carbon nanotubes (CNTs or N-CNTs) for epoxidation of alkenes and sulfoxidation of thioethers with aqueous hydrogen peroxide. Catalysts PW4/CNTs and PW4/N-CNTs (1.8 at. % N) containing 5-15 wt. % of PW4 and differing in acidity have been prepared and characterized by elemental analysis, N2 adsorption, IR spectroscopy, HR-TEM, and HAADF-STEM. Studies by STEM in HAADF mode revealed a quasi-molecular dispersion of PW4 on the surface of CNTs. The addition of acid during the immobilization is not obligatory to ensure site isolation and strong binding of PW4 on the surface of CNTs, but it allows one to increase the PW4 loading and affects both catalytic activity and product selectivity. Catalytic performance of the supported PW4 catalysts was evaluated in H2O2-based oxidation of two model substrates, cyclooctene and methyl phenyl sulfide, under mild conditions (25-50°C). The best results in terms of activity and selectivity were obtained using PW4 immobilized on N-free CNTs in acetonitrile or dimethyl carbonate as solvents. Catalysts PW4/CNTs can be applied for selective oxidation of a wide range of alkenes and thioethers provided a balance between activity and selectivity of the catalyst is tuned by a careful control of the amount of acid added during the immobilization of PW4. Selectivity, conversion, and turnover frequencies achieved in epoxidations over PW4/CNTs catalysts are close to those reported in the literature for homogeneous systems based on PW4. IR spectroscopy confirmed the retention of the Venturello structure after use in the catalytic reactions. The elaborated catalysts are stable to metal leaching, show a truly heterogeneous nature of the catalysis, can be easily recovered by filtration, regenerated by washing and evacuation, and then reused several times without loss of the catalytic performance.

6.
Chem Commun (Camb) ; 48(74): 9266-8, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-22885988

ABSTRACT

Kinetic and DFT studies revealed that protonation of Ti-containing polyoxometalates (Ti-POM) lowers significantly the energy barrier for the heterolytic oxygen transfer from the Ti hydroperoxo intermediate to the alkene, increasing the activity and selectivity of alkene oxidation.

7.
J Phys Chem B ; 115(42): 11971-83, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21913639

ABSTRACT

Oxidation of 2-methyl-1-naphthol (MNL) with molecular oxygen proceeds efficiently under mild reaction conditions (3 atm O(2), 60-80 °C) in the absence of any catalyst or sensitizer and produces 2-methyl-1,4-naphthoquinone (MNQ, menadione, or vitamin K(3)) with selectivity up to 80% in nonpolar solvents. (1)H NMR and (1)H,(1)H-COSY studies revealed the formation of 2-methyl-4-hydroperoxynaphthalene-1(4H)-one (HP) during the reaction course. Several mechanistic hypotheses, including conventional radical autoxidation, electron transfer mechanisms, photooxygenation, and thermal intersystem crossing (ISC), have been evaluated using spectroscopic, mass-spectrometric, spin-trapping, (18)O(2) labeling, kinetic, and computational techniques. Several facts collectively implicate that ISC contributes significantly into MNL oxidation with O(2) at elevated pressure: (i) the reaction rate is unaffected by light; (ii) C-C-coupling dimers are practically absent; (iii) the reaction is first order in both MNL and O(2); (iv) the observed activation parameters (ΔH(‡) = 8.1 kcal mol(-1) and ΔS(‡) = -50 eu) are similar to those found for the spin-forbidden oxidation of helianthrene with (3)O(2) (Seip, M.; Brauer, H.-D. J. Am. Chem. Soc.1992, 114, 4486); and (v) the external heavy atom effect (2-fold increase of the reaction rate in iodobenzene) points to spin inversion in the rate-limiting step.


Subject(s)
Naphthols/chemistry , Oxygen/chemistry , Kinetics , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Oxidation-Reduction , Solvents/chemistry , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL