Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34500889

ABSTRACT

Photoassisted synthesis is as a highly appealing green procedure for controlled decoration of semiconductor catalysts with co-catalyst nanoparticles, which can be carried out without the concourse of elevated temperatures, external chemical reducing agents or applied bias potential and in a simple slurry reactor. The aim of this study is to evaluate the control that such a photoassisted method can exert on the properties of ruthenium nanoparticles supported on TiO2 by means of the variation of the incident irradiance and hence of the photodeposition rate. For that purpose, different Ru/TiO2 systems with the same metal load have been prepared under varying irradiance and characterized by means of elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The photocatalytic activity of the so-obtained materials has been evaluated by using the degradation of formic acid in water under UV-A light. Particles with size around or below one nanometer were obtained, depending on the irradiance employed in the synthesis, with narrow size distribution and homogeneous dispersion over the titania support. The relation between neutral and positive oxidation states of ruthenium could also be controlled by the variation of the irradiance. The obtained photocatalytic activities for formic acid oxidation were in all cases higher than that of undecorated titania, with the sample obtained with the lowest irradiation giving rise to the highest oxidation rate. According to the catalysts characterization, photocatalytic activity is influenced by both Ru size and Ru0/Ruδ+ ratio.

2.
J Hazard Mater ; 400: 123099, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32569979

ABSTRACT

LaFeO3@TiO2 heterojunction composites with a core-shell porous structure and LaFeO3 contents in the 2.5-25 wt.% range have been synthesized via consecutive sol-gel syntheses and tested for the photocatalytic oxidation of the myclobutanil pesticide in water under solar light and pure visible light. Whatever the light spectrum, the kinetic rate constants for both myclobutanil degradation and TOC conversion exhibited a volcano-like profile with increasing the narrow band-gap (2.1 eV) LaFeO3 content, the optimum composite strongly overperforming both single phases, with full myclobutanil mineralization achieved in 240 min in the best case. The light spectrum influenced the optimum LaFeO3 content in the composite, being observed at 5 wt.% and 12.5 wt.% under solar and visible light, respectively. This has been attributed to the existence of different light-mediated reaction mechanisms. The optimum LaFeO3/TiO2 composite photocatalyst was active and stable after several runs under solar light with leached iron concentration below 0.1 mg/L in solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...