Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 11(9)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36139870

ABSTRACT

This study monitored the chemical and biochemical composition of bovine seminal plasma (SP). Freshly ejaculated semen (n = 20) was aliquoted into two parts. The first aliquot was immediately assessed to determine the sperm motion parameters. Another motility measurement was performed following an hour-long co-incubation of spermatozoa with SP at 6 °C. The other aliquot was processed to obtain the SP. Seminal plasma underwent the analyses of chemical composition and quantification of selected proteins, lipids and RedOx markers. Determined concentrations of observed parameters served as input data to correlation analyses where associations between micro and macro elements and RedOx markers were observed. Significant correlations of total oxidant status were found with the content of Cu and Mg. Further significant correlations of glutathione peroxidase were detected in relation to Fe and Hg. Furthermore, associations of chemical elements and RedOx markers and spermatozoa quality parameters were monitored. The most notable correlations indicate beneficial effects of seminal Fe on motility and Mg on velocity and viability of spermatozoa. On the contrary, negative correlations were registered between Zn and sperm velocity and seminal cholesterol content and motility. Our findings imply that seminal plasma has a prospective to be developed as the potential biomarker of bull reproductive health.

2.
Molecules ; 24(18)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31491847

ABSTRACT

Epicatechin (EPI) is a natural flavonoid with antibacterial, anti-inflammatory and anti-cancer properties. Furthermore, the molecule exhibits powerful reactive oxygen species (ROS) scavenging and metal-chelating properties. In this study, we assessed the efficiency of EPI to reverse ROS-mediated alterations to the motility, viability, DNA integrity and oxidative profile of bovine spermatozoa. For the first experiment, spermatozoa were washed out of fresh semen and exposed to 12.5 µmol/L EPI, 25 µmol/L EPI, 50 µmol/L EPI and 100 µmol/L EPI in the presence of ferrous ascorbate (FeAA) during a 6 h in vitro culture. For the second experiment, the ejaculates were split into aliquots and cryopreserved with a commercial semen extender supplemented with 12.5 µmol/L EPI, 25 µmol/L EPI, 50 µmol/L EPI, 100 µmol/L EPI or containing no supplement. Sperm motility was assessed using the computer-aided sperm analysis and the cell viability was studied with the metabolic activity test. ROS production was quantified using luminometry, and DNA fragmentation was evaluated using the chromatin dispersion test. Cell lysates were prepared at the end of the culture in order to assess the concentration of protein carbonyls and malondialdehyde. Exposure to FeAA led to a significantly reduced sperm motility (p < 0.001), mitochondrial activity (p < 0.001), but increased the generation of ROS (p < 0.001), as well as oxidative damage to proteins (p < 0.001), DNA (p < 0.001) and lipids (p < 0.001). EPI supplementation, particularly at a concentration range of 50-100 µmol/L, resulted in higher preservation of the spermatozoa vitality (p < 0.001). Furthermore, 50-100 µmol/L EPI were significantly effective in the prevention of oxidative damage to sperm proteins (p < 0.001), lipids (p < 0.001) and DNA (p < 0.01 in relation to 50 µmol/L EPI; p < 0.001 with respect to 100 µmol/L EPI). In the case of the cryopreserved spermatozoa, the administration of 50-100 µmol/L EPI resulted in higher sperm motility (p < 0.001) and mitochondrial activity (p < 0.001). ROS production, the number of protein carbonyls, lipid peroxidation as well as oxidative DNA damage were found to be significantly decreased particularly in samples cryopreserved in the presence of 100 µmol/L EPI (p < 0.001). Our results suggest that EPI could behave as an effective antioxidant which may prevent oxidative insults to spermatozoa, and thus, preserve their vitality and functionality. Nevertheless, its potential to achieve higher fertilization rates in reproductive technologies needs to be validated.


Subject(s)
Antioxidants/pharmacology , Catechin/pharmacology , Oxidative Stress/drug effects , Spermatozoa/drug effects , Spermatozoa/metabolism , Animals , Ascorbic Acid/pharmacology , Cattle , DNA Fragmentation/drug effects , Male , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Sperm Motility/drug effects
3.
Reprod Domest Anim ; 54(2): 150-159, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30192989

ABSTRACT

The use of artificial insemination in cattle breeding has evolved to global extent, and insemination doses are often shipped via air transport which requires strict radiation-based examinations. For the determination of effect of non-ionizing radiation (NIR), to which are beings frequently exposed due to protection of airport or cultural event security, freshly ejaculated and cryopreserved bovine spermatozoa were used as experimental model. Following radiation with hand-held metal detector in various exposition times (0, 10 s, 15, 30 and 60 min-groups FR, FR10, FR15, FR30 and FR60) the spermatozoa underwent motility and DNA fragmentation analyses. Study on cryoconserved semen treated with NIR was performed in time intervals 0, 10 s, 1 and 5 min (insemination doses radiated before cryoconservation-CB, CB10, CB1, CB5; samples radiated after freezing-CA, CA10, CA1 and CA5). Fresh semen and insemination doses radiated after cryoconservation showed significantly lower total and progressive motility. No effect on motility parameters was detected in semen extended with cryopreservative medium and radiated prior to freezing. Surprisingly, NIR showed a potential to stimulate spermatozoa velocity; however, the effect was modulated throughout the post-thawing incubation. Based on the DNA fragmentation assay, sperm DNA stayed intact. Present study underlines the potential harm of NIR, which is frequently used in everyday life, with overall adverse impact on human and animal reproduction. Current study also points out on interesting short-term spermatozoa stimulation induced by NIR.


Subject(s)
Cryopreservation/methods , Electromagnetic Fields/adverse effects , Semen Preservation/methods , Spermatozoa/physiology , Spermatozoa/radiation effects , Animals , Cattle , Cryopreservation/veterinary , DNA Fragmentation/radiation effects , Insemination, Artificial/veterinary , Male , Radiation, Nonionizing , Semen/physiology , Semen Preservation/veterinary , Sperm Motility/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...