Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(22): 13207-13218, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32548507

ABSTRACT

Despite the considerable efforts made to use silicon anodes and composites based on them in lithium-ion batteries, it is still not possible to overcome the difficulties associated with low conductivity, a decrease in the bulk energy density, and side reactions. In the present work, a new design of an electrochemical cell, whose anode is made in the form of silicene on a graphite substrate, is presented. The whole system was subjected to transmutation neutron doping. The molecular dynamics method was used to study the intercalation and deintercalation of lithium in a phosphorus-doped silicene channel. The maximum uniform filling of the channel with lithium is achieved at 3% and 6% P-doping of silicene. The high mobility of Li atoms in the channel creates the prerequisites for the fast charging of the battery. The method of statistical geometry revealed the irregular nature of the packing of lithium atoms in the channel. Stresses in the channel walls arising during its maximum filling with lithium are significantly inferior to the tensile strength even in the presence of polyvacancies in doped silicene. The proposed design of the electrochemical cell is safe to operate.

2.
Phys Chem Chem Phys ; 21(23): 12310-12320, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31139778

ABSTRACT

The lack of suitable anode materials is a limiting factor in the creation of a new generation of lithium-ion batteries. We use the molecular dynamics method to explore the processes of intercalation and deintercalation of lithium in the anode element, represented by two sheets of silicene, on a copper substrate. It is shown that the presence of vacancy-type defects in silicene increases the electrode capacitance, which becomes especially significant with bivacancies. However, the enlargement of defect sizes reduces the strength of the silicene channel during cycling and in the presence of hexavacancies it suffers a strong deformation and becomes impassable for Li+ ions during intercalation. The presence of a copper substrate greatly changes the electronic properties of silicene. The calculated DOS spectrum shows that silicon on a copper substrate acquires metallic properties. To analyze the structure we used the statistical geometry method. Lithium atoms in the channel are predominantly irregularly packed. However, part of the Li atoms are located above the hexagonal Si cells. The average stresses in silicene, calculated with limiting filling of the channel with lithium, are usually small. However, in the case of silicene with monovacancies, the tensile stress reaches 12.5% of the ultimate tensile stress. Evaluation of the dynamic stress observed in silicene during cycling shows that its value is less than 5% of the ultimate tensile stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...