Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 11(24): 10408-10413, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33253582

ABSTRACT

In this Letter, we report the first observation of the capacitance-potential hysteresis at the ionic liquid | electrode interface in atomistic molecular dynamics simulations. While modeling the differential capacitance dependence on the potential scan direction, we detected two long-living types of interfacial structure for the BMImPF6 ionic liquid at specific charge densities of the gold Au(111) surface. These structures differ in how counterions overscreen the surface charge. The high barrier for the transition from one structure to another slows down the interfacial restructuring process and leads to the marked capacitance-potential hysteresis.

2.
Phys Chem Chem Phys ; 20(15): 10275-10285, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29595850

ABSTRACT

In this study, we examined the thickness of the electrical double layer (EDL) in ionic liquids using density functional theory (DFT) calculations and molecular dynamics (MD) simulations. We focused on BF4- anion adsorption from the 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) ionic liquid on the Au(111) surface. At both DFT and MD levels, we evaluated the capacitance-potential dependence for the Helmholtz model of the interface. Using MD simulations, we also explored a more realistic, multilayer EDL model accounting for the ion layering. Concurrent analysis of the DFT and MD results provides a ground for thinking whether the electrical double layer in ionic liquids is one- or multi-ionic-layer thick.

3.
Phys Chem Chem Phys ; 19(18): 11004-11010, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28422218

ABSTRACT

Solvate ionic liquids are a subclass of ionic liquids that have the potential to be used in a range of electrochemical devices. We present molecular dynamics simulations of the interfacial structure of thin films of one such lithium based solvate ionic liquid, [Li(G4)][TFSI], an equimolar solution of tetraglyme and lithium bistriflimide. This solvate ionic liquid is shown to form a novel interfacial structure at a plane electrode, which differs in a number of ways from the nanostructure observed for a conventional ionic liquid at similar interfaces. This paper explores the structural composition of the interfacial layers of this solvate ionic liquid, including their variation with surface charge, and the relation between chemical structure and interfacial arrangement.

4.
Phys Chem Chem Phys ; 19(1): 846-853, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27934972

ABSTRACT

A molecular dynamics study of mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) with magnesium tetrafluoroborate (Mg[BF4]2) confined between two parallel graphene walls is reported. The structure of the system is analyzed by means of ionic density profiles, lateral structure of the first layer close to the graphene surface and angular orientations of imidazolium cations. Free energy profiles for divalent magnesium cations are calculated using two different methods in order to evaluate the height of the potential barriers near the walls, and the results are compared with those of mixtures of the same ionic liquid and a lithium salt (Li[BF4]). Preferential adsorption of magnesium cations is analyzed using a simple model and compared to that of lithium cations, and vibrational densities of states are calculated for the cations close to the walls analyzing the influence of the graphene surface charge. Our results indicate that magnesium cations next to the graphene wall have a roughly similar environment to that in the bulk. Moreover, they face higher potential barriers and are less adsorbed on the charged graphene walls than lithium cations. In other words, magnesium cations have a more stable solvation shell than lithium ones.

5.
Phys Chem Chem Phys ; 18(3): 2175-82, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26690957

ABSTRACT

The modern computer simulations of potential green solvents of the future, involving the room temperature ionic liquids, heavily rely on density functional theory (DFT). In order to verify the appropriateness of the common DFT methods, we have investigated the effect of the self-interaction error (SIE) on the results of DFT calculations for 24 ionic pairs and 48 ionic associates. The magnitude of the SIE is up to 40 kJ mol(-1) depending on the anion choice. Most strongly the SIE influences the calculation results of ionic associates that contain halide anions. For these associates, the range-separated density functionals suppress the SIE; for other cases, the revPBE density functional with dispersion correction and triple-ζ Slater-type basis is suitable for computationally inexpensive and reasonably accurate DFT calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...