Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mov Disord ; 36(8): 1899-1910, 2021 08.
Article in English | MEDLINE | ID: mdl-33942911

ABSTRACT

BACKGROUND: Persistent motor or vocal tic disorder (PMVT) has been hypothesized to be a forme fruste of Tourette syndrome (TS). Although the primary diagnostic criterion for PMVT (presence of motor or vocal tics, but not both) is clear, less is known about its clinical presentation. OBJECTIVE: The goals of this study were to compare the prevalence and number of comorbid psychiatric disorders, tic severity, age at tic onset, and family history for TS and PMVT. METHODS: We analyzed data from two independent cohorts using generalized linear equations and confirmed our findings using meta-analyses, incorporating data from previously published literature. RESULTS: Rates of obsessive-compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD) were lower in PMVT than in TS in all analyses. Other psychiatric comorbidities occurred with similar frequencies in PMVT and TS in both cohorts, although meta-analyses suggested lower rates of most psychiatric disorders in PMVT compared with TS. ADHD and OCD increased the odds of comorbid mood, anxiety, substance use, and disruptive behaviors, and accounted for observed differences between PMVT and TS. Age of tic onset was approximately 2 years later, and tic severity was lower in PMVT than in TS. First-degree relatives had elevated rates of TS, PMVT, OCD, and ADHD compared with population prevalences, with rates of TS equal to or greater than PMVT rates. CONCLUSIONS: Our findings support the hypothesis that PMVT and TS occur along a clinical spectrum in which TS is a more severe and PMVT a less severe manifestation of a continuous neurodevelopmental tic spectrum disorder. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Obsessive-Compulsive Disorder , Tic Disorders , Tics , Tourette Syndrome , Attention Deficit Disorder with Hyperactivity/epidemiology , Comorbidity , Humans , Obsessive-Compulsive Disorder/epidemiology , Tic Disorders/epidemiology , Tics/epidemiology , Tourette Syndrome/epidemiology
2.
Nat Commun ; 11(1): 2022, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332745

ABSTRACT

The thymus is a primary lymphoid organ that plays an essential role in T lymphocyte maturation and selection during development of one arm of the mammalian adaptive immune response. Although transcriptional mechanisms have been well documented in thymocyte development, co-/post-transcriptional modifications are also important but have received less attention. Here we demonstrate that the RNA alternative splicing factor MBNL1, which is sequestered in nuclear RNA foci by C(C)UG microsatellite expansions in myotonic dystrophy (DM), is essential for normal thymus development and function. Mbnl1 129S1 knockout mice develop postnatal thymic hyperplasia with thymocyte accumulation. Transcriptome analysis indicates numerous gene expression and RNA mis-splicing events, including transcription factors from the TCF/LEF family. CNBP, the gene containing an intronic CCTG microsatellite expansion in DM type 2 (DM2), is coordinately expressed with MBNL1 in the developing thymus and DM2 CCTG expansions induce similar transcriptome alterations in DM2 blood, which thus serve as disease-specific biomarkers.


Subject(s)
DNA-Binding Proteins/genetics , Myotonic Dystrophy/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Thymus Gland/growth & development , Adult , Aged , Aged, 80 and over , Animals , DNA Repeat Expansion , DNA-Binding Proteins/metabolism , Female , Humans , Introns/genetics , Male , Mice , Mice, Knockout , Microsatellite Repeats/genetics , Middle Aged , Myotonic Dystrophy/blood , Myotonic Dystrophy/immunology , RNA Splicing/immunology , RNA-Seq , Thymus Gland/immunology , Young Adult
3.
Genes Dev ; 33(23-24): 1635-1640, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31624084

ABSTRACT

Short tandem repeats (STRs) are prone to expansion mutations that cause multiple hereditary neurological and neuromuscular diseases. To study pathomechanisms using mouse models that recapitulate the tissue specificity and developmental timing of an STR expansion gene, we used rolling circle amplification and CRISPR/Cas9-mediated genome editing to generate Dmpk CTG expansion (CTGexp) knockin models of myotonic dystrophy type 1 (DM1). We demonstrate that skeletal muscle myoblasts and brain choroid plexus epithelial cells are particularly susceptible to Dmpk CTGexp mutations and RNA missplicing. Our results implicate dysregulation of muscle regeneration and cerebrospinal fluid homeostasis as early pathogenic events in DM1.


Subject(s)
Alternative Splicing/genetics , Microsatellite Repeats/genetics , Muscle, Skeletal/physiopathology , Myotonic Dystrophy/genetics , Myotonic Dystrophy/physiopathology , RNA Splicing/genetics , 3' Untranslated Regions/genetics , Animals , Choroid Plexus/physiopathology , DNA-Binding Proteins/genetics , Disease Models, Animal , Gene Expression Regulation, Developmental , Gene Knock-In Techniques , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/cytology , Mutation , Myotonin-Protein Kinase/genetics , Myotonin-Protein Kinase/metabolism , RNA-Binding Proteins/genetics
4.
Database (Oxford) ; 20182018 01 01.
Article in English | MEDLINE | ID: mdl-29931156

ABSTRACT

RNA-binding proteins (RBPs) may play a critical role in gene regulation in various diseases or biological processes by controlling post-transcriptional events such as polyadenylation, splicing and mRNA stabilization via binding activities to RNA molecules. Owing to the importance of RBPs in gene regulation, a great number of studies have been conducted, resulting in a large amount of RNA-Seq datasets. However, these datasets usually do not have structured organization of metadata, which limits their potentially wide use. To bridge this gap, the metadata of a comprehensive set of publicly available mouse RNA-Seq datasets with perturbed RBPs were collected and integrated into a database called RBPMetaDB. This database contains 292 mouse RNA-Seq datasets for a comprehensive list of 187 RBPs. These RBPs account for only ∼10% of all known RBPs annotated in Gene Ontology, indicating that most are still unexplored using high-throughput sequencing. This negative information provides a great pool of candidate RBPs for biologists to conduct future experimental studies. In addition, we found that DNA-binding activities are significantly enriched among RBPs in RBPMetaDB, suggesting that prior studies of these DNA- and RNA-binding factors focus more on DNA-binding activities instead of RNA-binding activities. This result reveals the opportunity to efficiently reuse these data for investigation of the roles of their RNA-binding activities. A web application has also been implemented to enable easy access and wide use of RBPMetaDB. It is expected that RBPMetaDB will be a great resource for improving understanding of the biological roles of RBPs.Database URL: http://rbpmetadb.yubiolab.org.


Subject(s)
Databases, Genetic , Molecular Sequence Annotation , RNA-Binding Proteins/metabolism , Sequence Analysis, RNA , Animals , Internet , Mice , Protein Domains , PubMed , Publications , Statistics as Topic , User-Computer Interface
5.
Database (Oxford) ; 20172017 01 01.
Article in English | MEDLINE | ID: mdl-29220461

ABSTRACT

Although the number of RNA-Seq datasets deposited publicly has increased over the past few years, incomplete annotation of the associated metadata limits their potential use. Because of the importance of RNA splicing in diseases and biological processes, we constructed a database called SFMetaDB by curating datasets related with RNA splicing factors. Our effort focused on the RNA-Seq datasets in which splicing factors were knocked-down, knocked-out or over-expressed, leading to 75 datasets corresponding to 56 splicing factors. These datasets can be used in differential alternative splicing analysis for the identification of the potential targets of these splicing factors and other functional studies. Surprisingly, only ∼15% of all the splicing factors have been studied by loss- or gain-of-function experiments using RNA-Seq. In particular, splicing factors with domains from a few dominant Pfam domain families have not been studied. This suggests a significant gap that needs to be addressed to fully elucidate the splicing regulatory landscape. Indeed, there are already mouse models available for ∼20 of the unstudied splicing factors, and it can be a fruitful research direction to study these splicing factors in vitro and in vivo using RNA-Seq. Database URL:http://sfmetadb.ece.tamu.edu/


Subject(s)
Databases, Genetic , RNA Splicing Factors/genetics , RNA Splicing/genetics , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...