Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38535688

ABSTRACT

The physical and mechanical properties and structural condition of flexible graphite foils produced by processing natural graphite with nitric acid, hydrolysis, thermal expansion of graphite and subsequent rolling were studied. The processes of obtaining materials and changing their characteristics has been thoroughly described and demonstrated. The structural transformations of graphite in the manufacture of foils were studied by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). A decrease in the average size of the coherent scattering regions (CSR) of nanocrystallites was revealed during the transition from natural graphite to thermally expanded graphite from 57.3 nm to 20.5 nm at a temperature of 900 °C. The rolling pressure ranged from 0.05 MPa to 72.5 MPa. The thickness of the flexible graphite foils varied from 0.11 mm to 0.75 mm, the density-from 0.70 to 1.75 g/cm3. It was shown that with an increase in density within these limits, the compressibility of the graphite foil decreased from 65% to 9%, the recoverability increased from 5% to 60%, and the resiliency decreased from 10% to 6%, which is explained by the structural features of nanocrystallites. The properties' anisotropy of graphite foils was studied. The tensile strength increased with increasing density from 3.0 MPa (ρ = 0.7 g/cm3) to 14.0 MPa (ρ = 1.75 g/cm3) both in the rolling direction L and across T. At the same time, the anisotropy of physical and mechanical properties increased with an increase in density along L and T to 12% with absolute values of 14.0 MPa against 12.5 MPa at a thickness of 200 µm. Expressed anisotropy was observed along L and T when studying the misorientation angles of nanocrystallites: at ρ = 0.7 g/cm3, it was from 13.4° to 14.4° (up to 5% at the same thickness); at ρ = 1.3 g/cm3-from 11.0° to 12.8° (up to 7%); at ρ = 1.75 g/cm3-from 10.9° to 12.4° (up to 11%). It was found that in graphite foils, there was an increase in the coherent scattering regions in nanocrystallites with an increase in density from 24.8 nm to 49.6 nm. The observed effect can be explained by the coagulation of nanocrystallites by enhancing the Van der Waals interaction between the surface planes of coaxial nanocrystallites, which is accompanied by an increase in microstrains. The results obtained can help discover the mechanism of deformation of porous graphite foils. The obtained results can help discover the deformation mechanism of porous graphite foils. We assume that this will help predict the material behavior under industrial operating conditions of products based flexible graphite foils.

2.
Langmuir ; 28(24): 8994-9002, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22404289

ABSTRACT

We describe a novel strategy for the fabrication of plasmonic nanopowders (dried gold nanoparticles) by using wet chemical nanoparticle synthesis, PEG-SH functionalization, and a standard freeze-drying technique. Our strategy is illustrated by successful fabrication of different plasmonic nanopowders, including gold nanorods, gold-silver nanocages, and gold nanospheres. Importantly, the dried nanoparticles can be stored for a long time under usual conditions and then can easily be dissolved in water at a desired concentration without such hard manipulations as sonication or heating. Redispersed samples maintain the plasmonic properties of parent colloids and do not form aggregates. These properties make pegylated freeze-dried gold nanoparticles attractive candidates for plasmonic photothermal therapy in clinical settings. In this work, redispersed gold nanorods were intravenously administered to mice bearing Ehrlich carcinoma tumors at doses of 2 and 8 mg (Au)/kg (animal). Particle biodistribution was measured by atomic absorption spectroscopy, and tumor hyperthermia effects were studied under laser NIR irradiation. Significant tumor damage was observed only at the higher dose of the nanorods.


Subject(s)
Carcinoma, Ehrlich Tumor/therapy , Gold/therapeutic use , Metal Nanoparticles/therapeutic use , Surface Plasmon Resonance , Animals , Carcinoma, Ehrlich Tumor/pathology , Female , Gold/chemistry , Lasers , Metal Nanoparticles/chemistry , Mice , Mice, Inbred BALB C , Phototherapy , Xenograft Model Antitumor Assays
3.
Magn Reson Chem ; 48(9): 685-92, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20623827

ABSTRACT

The (1)H, (13)C and (15)N NMR studies have shown that the E and Z isomers of pyrrole-2-carbaldehyde oxime adopt preferable conformation with the syn orientation of the oxime group with respect to the pyrrole ring. The syn conformation of E and Z isomers of pyrrole-2-carbaldehyde oxime is stabilized by the N-H...N and N-H...O intramolecular hydrogen bonds, respectively. The N-H...N hydrogen bond in the E isomer causes the high-frequency shift of the bridge proton signal by about 1 ppm and increase the (1)J(N, H) coupling by approximately 3 Hz. The bridge proton shows further deshielding and higher increase of the (1)J(N, H) coupling constant due to the strengthening of the N-H...O hydrogen bond in the Z isomer. The MP2 calculations indicate that the syn conformation of E and Z isomers is by approximately 3.5 kcal/mol energetically less favorable than the anti conformation. The calculations of (1)H shielding and (1)J(N, H) coupling in the syn and anti conformations allow the contribution to these constants from the N-H...N and N-H...O hydrogen bondings to be estimated. The NBO analysis suggests that the N-H...N hydrogen bond in the E isomer is a pure electrostatic interaction while the charge transfer from the oxygen lone pair to the antibonding orbital of the N-H bond through the N-H...O hydrogen bond occurs in the Z isomer.


Subject(s)
Molecular Dynamics Simulation , Oximes/chemistry , Pyrroles/chemistry , Quantum Theory , Carbon Isotopes , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Molecular Conformation , Nitrogen Isotopes , Protons , Reference Standards , Stereoisomerism
4.
Magn Reson Chem ; 47(2): 105-12, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19006103

ABSTRACT

According to the (1)H, (13)C and (15)N NMR spectroscopic data and DFT calculations, the E-isomer of 1-vinylpyrrole-2-carbaldehyde adopts preferable conformation with the anti-orientation of the vinyl group relative to the carbaldehyde oxime group and with the syn-arrangement of the carbaldehyde oxime group with reference to the pyrrole ring. This conformation is stabilized by the C-H...N intramolecular hydrogen bond between the alpha-hydrogen of the vinyl group and the oxime group nitrogen, which causes a pronounced high-frequency shift of the alpha-hydrogen signal in (1)H NMR (approximately 0.5 ppm) and an increase in the corresponding one-bond (13)C-(1)H coupling constant (ca 4 Hz). In the Z-isomer, the carbaldehyde oxime group turns to the anti-position with respect to the pyrrole ring. The C-H...O intramolecular hydrogen bond between the H-3 hydrogen of the pyrrole ring and the oxime group oxygen is realized in this case. Due to such hydrogen bonding, the H-3 hydrogen resonance is shifted to a higher frequency by about 1 ppm and the one-bond (13)C-(1)H coupling constant for this proton increases by approximately 5 Hz.

SELECTION OF CITATIONS
SEARCH DETAIL
...