Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Org Lett ; 26(1): 132-136, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38156983

ABSTRACT

A one-pot highly selective approach to the synthesis of hitherto unknown tetrahydropyrrolo[2',1':3,4]pyrazino[1,2-b]pyrrolo[2',1':3,4]pyrazino[1,2-e][1,2,4,5]tetrazine ensembles from simple and available N-allenylpyrrole-2-carbaldehydes and hydrazines has been developed. The reaction proceeds in a very facile manner and tolerates different substituents in both pyrroles and hydrazines. The novel class of organic compounds, tetrahydrodipyrrolodipyrazinotetrazines, proves to be promising pH-sensitive switchers to deliver N-aminopyrrolopyrazinium salts in acidic media and then again tetrahydrodipyrrolodipyrazinotetrazines in basic media. Both transformations give the products in quantitative yields.

2.
Nat Commun ; 13(1): 6910, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376302

ABSTRACT

Tumour microenvironment hinders nanoparticle transport deep into the tissue precluding thorough treatment of solid tumours and metastatic nodes. We introduce an anticancer drug delivery concept termed FlaRE (Flash Release in Endothelium), which represents alternative to the existing approaches based on enhanced permeability and retention effect. This approach relies on enhanced drug-loaded nanocarrier accumulation in vessels of the target tumour or metastasised organ, followed by a rapid release of encapsulated drug within tens of minutes. It leads to a gradient-driven permeation of the drug to the target tissue. This pharmaceutical delivery approach is predicted by theoretical modelling and validated experimentally using rationally designed MIL-101(Fe) metal-organic frameworks. Doxorubicin-loaded MIL-101 nanoparticles get swiftly trapped in the vasculature of the metastasised lungs, disassemble in the blood vessels within 15 minutes and release drug, which rapidly impregnates the organ. A significant improvement of the therapeutic outcome is demonstrated in animal models of early and late-stage B16-F1 melanoma metastases with 11-fold and 4.3-fold decrease of pulmonary melanoma nodes, respectively.


Subject(s)
Melanoma , Metal-Organic Frameworks , Nanoparticles , Animals , Drug Liberation , Nanoparticles/therapeutic use , Metal-Organic Frameworks/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Melanoma/drug therapy , Drug Delivery Systems , Drug Carriers/therapeutic use , Tumor Microenvironment
3.
Biosensors (Basel) ; 12(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35624601

ABSTRACT

Surface-enhanced Raman scattering (SERS) spectroscopy is a surface- or cavity-enhanced variant of Raman scattering spectroscopy that allows the detection of analytes with a sensitivity down to single molecules. This method involves the use of SERS-active surfaces or cavities capable of concentrating incident radiation into small mode volumes containing the analyte. Here, we have engineered an ultranarrow metal-dielectric nano-cavity out of a film of the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) glycoprotein and a silver surface, held together by interaction between reduced protein sulfhydryl groups and silver. The concentration of light in this nano-cavity allows the label-free recording of the characteristic Raman spectra of protein samples smaller than 1 pg. This is sufficient for the ultrasensitive detection of viral protein antigens at physiologically relevant levels. Moreover, the protein SERS signal can be increased by several orders of magnitude by coating the RBD film with a nanometer-thick silver shell, thereby raising the cavity Q-factor. This ensures a sub-femtogram sensitivity of the viral antigen detection. A simple theoretical model explaining the observed additional enhancement of the SERS signal from the silver-coated protein is proposed. Our study is the first to obtain the characteristic Raman and SERS spectra of the RBD of S glycoprotein, the key SARS-CoV-2 viral antigen, directly, without the use of Raman-reporter molecules. Thus, our approach allows label-free recording of the characteristic spectra of viral antigens at concentrations orders of magnitude lower than those required for detecting the whole virus in biological media. This makes it possible to develop a high-performance optical detection method and conformational analysis of the pathogen and its variants.


Subject(s)
COVID-19 , Spectrum Analysis, Raman , Antigens, Viral , COVID-19/diagnosis , Humans , SARS-CoV-2 , Silver/chemistry , Spectrum Analysis, Raman/methods , Spike Glycoprotein, Coronavirus
4.
J Epidemiol Glob Health ; 12(2): 206-213, 2022 06.
Article in English | MEDLINE | ID: mdl-35635641

ABSTRACT

BACKGROUND: The aim of the study was to assess the prevalence of seropositive status for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-IgA, -IgM, and -IgG; its dynamics in connection with restrictive measures during the coronavirus disease (COVID-19) pandemic; and the quantitative dynamics of antibody levels in the population of St. Petersburg, Russia. METHODS: From May to November 2020, a retrospective analysis of Saint Petersburg State University Hospital laboratory database was performed. The database included 158,283 test results of 87,067 patients for SARS-CoV-2 detection by polymerase chain reaction (PCR) and antibody detection of SARS-CoV-2-IgA, -IgM, and -IgG. The dynamics of antibody level was assessed using R v.3.6.3. RESULTS: The introduction of a universal lockdown was effective in containing the spread of COVID-19. The proportion of seropositive patients gradually decreased; approximately 50% of these patients remained seropositive for IgM after 3-4 weeks; for IgG, by follow-up week 22; and for IgA, by week 12. The maximum decrease in IgG and IgA was observed 3-4 months and 2 months after the detection of the seropositive status, respectively. CONCLUSIONS: The epidemiological study of post-infection immunity to COVID-19 demonstrates significant differences in the dynamics of IgA, IgM, and IgG seropositivity and in PCR test results over time, which is linked to the introduction of restrictive measures. Both the proportion of seropositive patients and the level of all antibodies decreased in terms of the dynamics, and only approximately half of these patients remained IgG-positive 6 months post-infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Communicable Disease Control , Humans , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Prevalence , Retrospective Studies
5.
Molecules ; 27(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458661

ABSTRACT

This article shows that two extremely important families of fused heterocyclic assemblies, namely 6-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazine and 5a-methyl-5a,6-dihydro-5H,12H-benzo[4,5]imidazo[1,2-a]pyrrolo[1,2-d]pyrazine, can be synthesized from only two available building blocks (N-allenylpyrrole-2-carbaldehyde and o-phenylenediamine) by controlling only one reaction parameter (water content of the medium). It should be emphasized that the latter class of compounds (with an a/d arrangement) is previously unknown. If the allene group is introduced not into the starting compound, but during the reaction (in superbase media), a heterocyclic ensemble, 5-methylbenzo[4,5]imidazo[1,2-a]pyrrolo[2,1-c]pyrazines, with a different position of the methyl group is formed.


Subject(s)
Pyrazines , Solvents
6.
J Pharm Pract ; 35(4): 518-523, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33622083

ABSTRACT

BACKGROUND: Diazepam is one of the most commonly prescribed tranquilizers for the therapy of alcohol withdrawal syndrome (AWS). Despite its popularity, there is currently no precise information on the effect of genetic polymorphisms on the efficacy and safety of diazepam therapy. OBJECTIVE: The objective of our study was to study the effect of CYP3A isoenzymes activity on the efficacy and safety of diazepam in patients with AWS. METHODS: The study was conducted on 30 Russian male patients suffering from the AWS who received diazepam in injections at a dosage of 30.0 mg / day for 5 days. The efficacy and safety assessment was performed using psychometric scales and scales for assessing the severity of adverse drug reactions. RESULTS: Based on the results of the study, we revealed the differences in the efficacy of therapy in patients with different CYP3A4 C>T intron 6 (rs35599367) genotypes: (CC) -9.0 [-13.0; -5.0], (CT+TT) -13.5 [-15.0; -10.0], p = 0.014. The scores on the UKU scale, which was used to evaluate the safety of therapy, were also different: (CC) 7.5 [6.0; 11.0], (CT+TT) 11.0 [8.0; 12.0], p = 0.003. CONCLUSION: Possible relationship between the CYP3A activity, evaluated by the content of the urinary endogenous substrate of the given isoenzyme and its metabolite, the 6-beta-hydroxy cortisol (6-ß-HC) / cortisol ratio, and the efficacy of diazepam was demonstrated. This possible relationship was also supported by the genotyping results. This should be taken into consideration when prescribing this drug to such patients in order to reduce the risk of pharmacoresistance.


Subject(s)
Alcoholism , Cytochrome P-450 CYP3A , Diazepam , Hypnotics and Sedatives , Substance Withdrawal Syndrome , Alcoholism/complications , Alcoholism/drug therapy , Alcoholism/genetics , Cytochrome P-450 CYP3A/genetics , Diazepam/adverse effects , Diazepam/therapeutic use , Humans , Hydrocortisone/therapeutic use , Hypnotics and Sedatives/adverse effects , Hypnotics and Sedatives/therapeutic use , Male , Polymorphism, Genetic , Substance Withdrawal Syndrome/diagnosis , Substance Withdrawal Syndrome/drug therapy , Substance Withdrawal Syndrome/etiology , Substance Withdrawal Syndrome/genetics
7.
Molecules ; 26(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33803018

ABSTRACT

An efficient method for the synthesis of pharmaceutically prospective pyrrole-aminopyrimidine ensembles (in up to 91% yield) by the cyclocondensation of easily available acylethynylpyrroles with guanidine nitrate has been developed. The reaction proceeds under heating (110-115 °C, 4 h) in the KOH/DMSO system. In the case of 2-benzoylethynylpyrrole, the unexpected addition of the formed pyrrole-aminopyrimidine as N- (NH moiety of the pyrrole ring) and C- (CH of aminopyrimidine) nucleophiles to the triple bond is observed.


Subject(s)
Cycloaddition Reaction/methods , Guanidines/chemistry , Pyrimidines/chemistry , Pyrroles/chemistry , Dimethyl Sulfoxide/chemistry , Hot Temperature , Hydroxides/chemistry , Potassium Compounds/chemistry
8.
J Mass Spectrom ; 56(4): e4601, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-33196134

ABSTRACT

We studied HCl uptake by MgCl2 and sea salt over a relative humidity (RH) range from 0% to 34% at 278-313 K using a differential bead-filled flow tube coupled to a high-pressure chemical ionization mass spectrometer. The results showed that dry MgCl2 and sea salt are essentially inert to gaseous HCl with a probability of less than 10-6 . However, under humid conditions, HCl was found to be efficiently taken up by wet inorganic surfaces. The HCl uptake coefficient for MgCl2 and sea salt increased squarely with RH, reaching a value of 0.00123 and 0.00171, respectively, at 29% RH and 298 K. Such wetting behavior is even enhanced at elevated temperatures, with the coefficient reaching 0.00208 and 0.00239, respectively, at 313 K. Based on the study of the dependence of γHCl on the initial HCl concentration, we estimate γHCl as 0.012 at 24% RH at a typical HCl concentration in the troposphere. In addition, the observation of the remarkable enhancement in the OH uptake by the HCl-treated salts agrees with the results of our previous investigation, which suggested that water absorption on salts enhances γOH by lowering the surface pH. The proposed mechanism of HCl uptake by sea salt aerosol has implications for ozone production in the marine boundary layer.

9.
Front Chem ; 8: 295, 2020.
Article in English | MEDLINE | ID: mdl-32457866

ABSTRACT

Local overheating of biotissue is a critical step for biomedical applications, such as photothermal therapy, enhancement of vascular permeability, remote control of drug release, and so on. Overheating of biological tissue when exposed to light is usually realized by utilizing the materials with a high-absorption cross section (gold, silica, carbon nanoparticles, etc.). Here, we demonstrate core/shell NaYF4:Yb3+, Tm3+/NaYF4 upconversion nanoparticles (UCNPs) commonly used for bioimaging as promising near-infrared (NIR) absorbers for local overheating of biotissue. We assume that achievable temperature of tissue labeled with nanoparticles is high enough because of Yb3+ resonance absorption of NIR radiation, whereas the use of auxiliary light-absorbing materials or shells is optional for photothermal therapy. For this purpose, a computational model of tissue heating based on the energy balance equations was developed and verified with the experimentally obtained thermal-graphic maps of a mouse in response to the 975-nm laser irradiation. Labeling of biotissue with UCNPs was found to increase the local temperature up to 2°C compared to that of the non-labeled area under the laser intensity lower than 1 W/cm2. The cellular response to the UCNP-initiated hyperthermia at subcritical ablation temperatures (lower than 42°C) was demonstrated by measuring the heat shock protein overexpression. This indicates that the absorption cross section of Yb3+ in UCNPs is relatively large, and microscopic temperature of nanoparticles exceeds the integral tissue temperature. In summary, a new approach based on the use of UCNP without any additional NIR absorbers was used to demonstrate a simple approach in the development of photoluminescent probes for simultaneous bioimaging and local hyperthermia.

10.
Anal Chim Acta ; 1100: 250-257, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31987148

ABSTRACT

Original multiscale flaked silver SERS-substrate (MFSS substrate) was applied for glycated albumin (GA) biosensing. The substrate is composed from silver flakes that have three orders of magnitude size dispersion: from 50 nm to 2 µm. The multiscale silver structure refracts the incident light and various surface plasmons are excited. Some of the internal plasmons are localized and give rise of the large local electric field. It was demonstrated that Raman scattering signal strongly depends: a) on "hot spots" formation at the edges and points of contact of silver plates, and b) on the angle of incidence. As a result the silver structure operates as an effective SERS substrate. To achieve the selectivity to glycated part, the surface of SERS-substrate was modified with 4-mercaptophenylboronic acid (4-mPBA). Various saccharides (Fru, Glc, Suc, Dex) were taken as model compounds for the glycated proteins determination. The saccharides contain cis-diol groups that form five- or six-membered ethers with boronic acid. Spectrum of SERS-substrate changes after sugar/glycated albumin treatment. Main differences in the SERS-spectra of sugar/glycated albumin treated SERS-substrate and control are referred to phenylboronic acid vibrations (999, 1021, 1072 and 1589 cm-1). Principal component analysis (PCA) and Partial Least Squares Regression (PLS-R) were used to discriminate spectra and to construct calibration curve, as well as to measure GA values in real samples of human plasma. Multiscale flaked silver SERS-substrate modified with 4-mPBA allows quantitative one-step biosensing of glycated albumin in 15 µl of human plasma.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Metal Nanoparticles/chemistry , Serum Albumin/analysis , Silver/chemistry , Glycation End Products, Advanced , Humans , Spectrum Analysis, Raman , Glycated Serum Albumin
11.
J Biomed Opt ; 22(9): 1-7, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28914009

ABSTRACT

Photodynamic therapy becomes a widely spread method due to cancer growth in the world. However, to detect tumors at early stages, it is necessary to carry out diagnostic measures in a timely manner. Our aim was to test the developed pharmaceutical composition, which can be used for external application in early fluorescent diagnostics even in the absence of visual changes, as well as for therapy effectiveness control. Pharmacokinetic studies on laboratory animals and volunteers were carried out. The results have shown that the dipotassium salt of Yb3+-dimethoxyhematoporphyrin IX, which is highly soluble in water and stable in storage, is a promising marker for earlier diagnostics of tumors and can be used in dermatology, dentistry, gynecology, cosmetology, ear, nose, and throat diseases, veterinary, and in other areas of medicine.


Subject(s)
Luminescence , Skin Diseases/diagnosis , Animals , Humans , Skin Neoplasms/diagnosis , Spectroscopy, Near-Infrared
12.
Sci Rep ; 4: 7034, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25391603

ABSTRACT

Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50 °C under relatively low nanoparticle concentrations (<1 mg/mL) and RF radiation intensities (1-5 W/cm(2)). For both types of nanoparticles the heating rate was linearly dependent on nanoparticle concentration, while laser-ablated nanoparticles demonstrated a remarkably higher heating rate than porous silicon-based ones for the whole range of the used concentrations from 0.01 to 0.4 mg/mL. The observed effect is explained by the Joule heating due to the generation of electrical currents at the nanoparticle/water interface. Profiting from the nanoparticle-based hyperthermia, we demonstrate an efficient treatment of Lewis lung carcinoma in vivo. Combined with the possibility of involvement of parallel imaging and treatment channels based on unique optical properties of Si-based nanomaterials, the proposed method promises a new landmark in the development of new modalities for mild cancer therapy.


Subject(s)
Carcinoma, Lewis Lung/therapy , Catheter Ablation/methods , Hyperthermia, Induced/methods , Nanoparticles/administration & dosage , Silicon/chemistry , Animals , Carcinoma, Lewis Lung/pathology , Catheter Ablation/instrumentation , Crystallization , Hindlimb , Hyperthermia, Induced/instrumentation , Injections, Intralesional , Lasers , Male , Mice , Mice, Inbred CBA , Nanoparticles/chemistry , Neoplasm Transplantation , Porosity , Temperature
13.
Photochem Photobiol ; 90(6): 1413-22, 2014.
Article in English | MEDLINE | ID: mdl-25185511

ABSTRACT

There is a growing demand on the studies of the wound healing potentials of photodynamic therapy. Here we analyze the effects of Fotoditazin, an e6 chlorine derivative, and its complexes with amphiphilic polymers, on the early stage of wound healing in a rat model. A skin excision wound model with prevented contraction was developed in male albino rats divided into eight groups according to the treatment mode. All animals received injections of one of the studied compositions into their wound beds and underwent low-intensity laser irradiation or stayed un-irradiated. The clinical monitoring and histological examination of the wounds were performed. It has been found that all the Fotoditazin formulations have significant effects on the early stage of wound healing. The superposition of the inflammation and regeneration was the main difference between groups. The aqueous solution of Fotoditazin alone induced a significant capillary hemorrhage, while its combinations with amphiphilic polymers did not. The best clinical and morphological results were obtained for the Fotoditazin-Pluronic F127 composition. Compositions of Fotoditazin and amphiphilic polymers, especially Pluronic F127, probably, have a great potential for therapy of wounds. Their effects can be attributed to the increased regeneration and suppressed reactions changes at the early stages of repair.


Subject(s)
Photochemotherapy , Photosensitizing Agents/pharmacology , Polymers/chemistry , Porphyrins/pharmacology , Wound Healing/drug effects , Animals , Chlorophyllides , Porphyrins/chemistry , Rats
14.
Dalton Trans ; 41(18): 5512-6, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22430897

ABSTRACT

N-Vinylpyrroles and -indoles bearing electron-withdrawing substituents at the pyrrole ring are mercurated, with 1 equivalent of Hg(OAc)(2) in dry MeCN (20-80 °C), regioselectively at the vinyl group (yields are almost quantitative), while their congeners without electron-withdrawing functions are mercurated both at the N-vinyl group and the pyrrole ring.


Subject(s)
Indoles/chemistry , Mercury/chemistry , Pyrroles/chemistry , Vinyl Compounds/chemistry , Magnetic Resonance Spectroscopy
15.
FASEB J ; 26(5): 2019-30, 2012 May.
Article in English | MEDLINE | ID: mdl-22271762

ABSTRACT

Apolipoprotein A-I (ApoA-I) is the main functional protein component of human high-density lipoproteins. ApoA-I shows various anti-inflammatory and atheroprotective properties toward macrophages; however, endogenous apoA-I expression has not been investigated in macrophages. We have shown that endogenous apoA-I gene is expressed in human macrophages at both mRNA and protein levels. Endogenous ApoA-I is localized in intracellular vesicles and at the external side of the plasma membrane in association with ATP-binding cassette transporter A1 (ABCA1) and lipid rafts in macrophages. We have shown that endogenous ApoA-I stabilizes ABCA1, moreover, down-regulation of ApoA-I by siRNA results in an increase of Toll-like receptor 4 (TLR4) mRNA and membrane surface protein expression, as well as an enhancement of bacterial lipopolysaccharide (LPS)-induced expression of tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), and inducible nitric oxide synthase (NOS2) genes in human macrophages. TNF-α stimulates ApoA-I expression and secretion (1.2±0.2 vs. 4.3±0.9 ng/mg total protein) in macrophages. Obtained results suggest that endogenous ApoA-I has anti-inflammatory properties, presumably due to ABCA1 stabilization in macrophages; these results elucidate the cell type-specific mechanism of the TNF-α-mediated regulation of apoA-I gene expression in monocytes and macrophages.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Apolipoprotein A-I/physiology , Macrophages/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , ATP Binding Cassette Transporter 1 , Animals , Apolipoprotein A-I/genetics , Base Sequence , DNA Primers , Enzyme-Linked Immunosorbent Assay , Humans , Male , Mice , Mice, Inbred C57BL
16.
J Phys Chem A ; 112(30): 6968-77, 2008 Jul 31.
Article in English | MEDLINE | ID: mdl-18593137

ABSTRACT

An experimental study of the dependence of the OH uptake coefficient gamma OH over a relative humidity of 0-48% was carried out at 100 Torr and room temperature, using a differential bead-filled flow tube coupled to a high-pressure chemical ionization mass spectrometer. Various organic (paraffin wax, pyrene, glutaric acid, and soot) and inorganic (NaCl, KCl, MgCl2, CaCl2, Na2SO4, and sea salt) surfaces served as proxies for tropospheric aerosols. A virtual cylindrical flow tube approximation and a surface coating dilution technique were successfully employed in the study, which included measurements of high radical uptake with an initial probability of near unity. For inorganic salts, the effect of water vapor, enhancement or inhibition of gamma OH, was found to be dependent on the blocking of anions and changes in surface pH. Although OH uptake by NaCl, the major component of sea-salt aerosols, is weakly dependent on water vapor, it is enhanced by a factor of approximately 2 for MgCl2 and determines the net relative humidity dependence of the radical uptake on sea salt, which is enhanced by a factor of approximately 4. For the organic surfaces studied, the enhancement effect of a factor 4 was also observed only for a hydrophilic organic surface, namely, glutaric acid. Results of the uptake studies suggest that the effect of relative humidity is important and should be accounted for in atmospheric modeling of tropospheric aerosol chemistry.

17.
J Phys Chem A ; 111(9): 1632-7, 2007 Mar 08.
Article in English | MEDLINE | ID: mdl-17298040

ABSTRACT

The diffusion of OH, HO2, and O3 in He, and of OH in air, has been investigated using a coated-wall flow tube reactor coupled to a chemical ionization mass spectrometry. The diffusion coefficients were determined from measurements of the loss of the reactive species to the flow tube wall as a function of pressure. On the basis of the experimental results, D(OH-He) = 662 +/- 33 Torr cm2 s-1, D(OH-air) = 165 +/- 20 Torr cm2 s-1, D(HO2-He) = 430 +/- 30 Torr cm2 s-1, and D(O3-He) = 410 +/- 25 Torr cm2 s-1 at 296 K. We show that the measured values for OH and HO2 are in better agreement with measured values of their polar analogues (H2O and H2O2) compared with measured values of their nonpolar analogues (O and O2). The measured value for OH in air is 25% smaller than that for O (the nonpolar analogue). The difference between the measured value for HO2 and O2 (the nonpolar analogue) in air is expected to be even larger. Also we show that calculations of the diffusion coefficients based on Lennard-Jones potentials are in excellent agreement with the measurements. This gives further confidence that these calculations can be used to estimate accurate diffusion coefficients for conditions where laboratory data currently do not exist.

SELECTION OF CITATIONS
SEARCH DETAIL
...