Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EPJ Web Conf ; 2192019.
Article in English | MEDLINE | ID: mdl-36452450

ABSTRACT

A precise value of the neutron lifetime is important in several areas of physics, including determinations of the quark-mixing matrix element │V ud│, related tests of the Standard Model, and predictions of light element abundances in Big Bang Nucleosynthesis models. We report the progress on a new measurement of the neutron lifetime utilizing the cold neutron beam technique. Several experimental improvements in both neutron and proton counting that have been developed over the last decade are presented. This new effort should yield a final uncertainty on the lifetime of 1 s with an improved understanding of the systematic effects.

2.
Nature ; 528(7583): 560-564, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26649819

ABSTRACT

Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.


Subject(s)
Epithelial Cells/cytology , Interleukins/immunology , Intestinal Mucosa/cytology , Intestine, Small/cytology , Regeneration , Stem Cells/cytology , Stem Cells/metabolism , Animals , Epithelial Cells/immunology , Epithelial Cells/pathology , Female , Graft vs Host Disease/pathology , Humans , Immunity, Mucosal , Interleukins/deficiency , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestine, Small/immunology , Intestine, Small/pathology , Mice , Organoids/cytology , Organoids/growth & development , Organoids/immunology , Paneth Cells/cytology , Phosphorylation , STAT3 Transcription Factor/metabolism , Signal Transduction , Stem Cell Niche , Interleukin-22
SELECTION OF CITATIONS
SEARCH DETAIL
...