Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
2.
J Cell Sci ; 137(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38940347

ABSTRACT

Some chemotherapy drugs modulate the formation of stress granules (SGs), which are RNA-containing cytoplasmic foci contributing to stress response pathways. How SGs mechanistically contribute to pro-survival or pro-apoptotic functions must be better defined. The chemotherapy drug lomustine promotes SG formation by activating the stress-sensing eIF2α kinase HRI (encoded by the EIF2AK1 gene). Here, we applied a DNA microarray-based transcriptome analysis to determine the genes modulated by lomustine-induced stress and suggest roles for SGs in this process. We found that the expression of the pro-apoptotic EGR1 gene was specifically regulated in cells upon lomustine treatment. The appearance of EGR1-encoding mRNA in SGs correlated with a decrease in EGR1 mRNA translation. Specifically, EGR1 mRNA was sequestered to SGs upon lomustine treatment, probably preventing its ribosome translation and consequently limiting the degree of apoptosis. Our data support the model where SGs can selectively sequester specific mRNAs in a stress-specific manner, modulate their availability for translation, and thus determine the fate of a stressed cell.


Subject(s)
Early Growth Response Protein 1 , Lomustine , RNA, Messenger , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Lomustine/pharmacology , Stress Granules/metabolism , Stress Granules/genetics , Apoptosis/drug effects , Antineoplastic Agents, Alkylating/pharmacology
3.
Methods Enzymol ; 695: 255-274, 2024.
Article in English | MEDLINE | ID: mdl-38521588

ABSTRACT

RNAs often accomplish their diverse functions through direct interactions with RNA-binding proteins (RBPs) in a sequence- and/or structure-dependent manner. RNA G-quadruplexes (rG4s) are unique secondary structures formed by guanine-rich RNA sequences which impact RNA function independently and in combination with RBPs. Efforts from several labs have identified dozens of rG4 specific RBPs (rG4BPs), although the research is still in the growing phase. Here we present methods for the systematic identification of rG4BPs using a pull-down approach that takes advantage of the chemical modification of guanine bases. This allows abolishing the rG4 structures while still maintaining the base composition intact, and hence helps in recognizing true rG4BPS (in contrast to G-rich motif binders). In combination with other biochemical assays, such an approach can be efficiently used for the identification and characterization of bona fide rG4BPs.


Subject(s)
G-Quadruplexes , RNA/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Guanine/chemistry
4.
Trends Cell Biol ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38341346

ABSTRACT

RNA G-quadruplexes (rG4s) are noncanonical secondary structures formed by guanine-rich sequences that are found in different regions of RNA molecules. These structures have been implicated in diverse biological processes, including translation, splicing, and RNA stability. Recent studies have suggested that rG4s play a role in the cellular response to stress. This review summarizes the current knowledge on rG4s under stress, focusing on their formation, regulation, and potential functions in stress response pathways. We discuss the molecular mechanisms that regulate the formation of rG4 under different stress conditions and the impact of these structures on RNA metabolism, gene expression, and cell survival. Finally, we highlight the potential therapeutic implications of targeting rG4s for the treatment of stress-related diseases through modulating cell survival.

5.
Neurosurgery ; 94(2): 423-430, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37665222

ABSTRACT

BACKGROUND AND OBJECTIVES: Brain metastases (BM) develop in nearly half of the patients with advanced melanoma. The aim of this retrospective historical cohort study was to analyze radiological response of melanoma BM to single-fraction Gamma Knife radiosurgery (GKRS), in relation to biologically effective dose (BED) for various alpha/beta ratios. METHODS: Included in the study were 274 lesions. Primary outcome was local control (LC). Mean marginal dose was 21.6 Gy (median 22, range 15-25). Biologically effective dose was calculated for an alpha/beta ratio of 3 (Gy 3 ), 5 (Gy 10 ), 10 (Gy 10 ), and 15 (Gy 15 ). RESULTS: Receiver operating characteristic value for LC and BED was 85% (most statistically significant odds ratio 1.14 for BED Gy 15 , P = .006), while for LC and physical dose was 79% ( P = .02). When comparing equality of 2 receiver operating characteristic areas, this was statistically significant ( P = .02 and .03). Fractional polynomial regression revealed BED (Gy 10 and Gy 15 ) as statistically significant ( P = .05) with BED of more than 63 Gy 10 or 49 Gy 15 as relevant, also for higher probability of quick decrease in volume first month after GKRS and lower probability of radiation necrosis. Shorter irradiation time was associated with better LC ( P = .001), particularly less than 40 minutes (LC below 90%, P = .05). CONCLUSION: BED Gy 10 and particularly Gy 15 were more statistically significant than physical dose for LC after GKRS for radioresistant melanoma BM. Irradiation time (per lesion) longer than 40 minutes was predictive for lower rates of LC. Such results need to be validated in larger cohorts.


Subject(s)
Brain Neoplasms , Melanoma , Radiosurgery , Humans , Radiosurgery/methods , Retrospective Studies , Cohort Studies , Melanoma/radiotherapy , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Brain Neoplasms/secondary , Treatment Outcome
6.
Antioxid Redox Signal ; 40(10-12): 715-735, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37767630

ABSTRACT

Significance: Oxidative stress refers to excessive intracellular levels of reactive oxygen species (ROS) due to an imbalance between ROS production and the antioxidant defense system. Under oxidative stress conditions, cells trigger various stress response pathways to protect themselves, among which repression of messenger RNA (mRNA) translation is one of the key hallmarks promoting cell survival. This regulation process minimizes cellular energy consumption, enabling cells to survive in adverse conditions and to promote recovery from stress-induced damage. Recent Advances: Recent studies suggest that transfer RNAs (tRNAs) play important roles in regulating translation as a part of stress response under adverse conditions. In particular, research relying on high-throughput techniques such as next-generation sequencing and mass spectrometry approaches has given us detailed information on mechanisms such as individual tRNA dynamics and crosstalk among post-transcriptional modifications. Critical Issues: Oxidative stress leads to dynamic tRNA changes, including their localization, cleavage, and alteration of expression profiles and modification patterns. Growing evidence suggests that these changes not only are tightly regulated by stress response mechanisms, but also can directly fine-tune the translation efficiency, which contributes to cell- or tissue-specific response to oxidative stress. Future Directions: In this review, we describe recent advances in the understanding of the dynamic changes of tRNAs caused by oxidative stress. We also highlight the emerging roles of tRNAs in translation regulation under the condition of oxidative stress. In addition, we discuss future perspectives in this research field. Antioxid. Redox Signal. 40, 715-735.


Subject(s)
Oxidative Stress , Proteins , Reactive Oxygen Species/metabolism , Oxidative Stress/physiology , Proteins/metabolism , Protein Biosynthesis , RNA, Transfer/genetics , RNA, Transfer/chemistry , RNA, Transfer/metabolism
7.
Semin Cell Dev Biol ; 154(Pt B): 138-154, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37357122

ABSTRACT

Cellular stress is an intrinsic part of cell physiology that underlines cell survival or death. The ability of mammalian cells to regulate global protein synthesis (aka translational control) represents a critical, yet underappreciated, layer of regulation during the stress response. Various cellular stress response pathways monitor conditions of cell growth and subsequently reshape the cellular translatome to optimize translational outputs. On the molecular level, such translational reprogramming involves an intricate network of interactions between translation machinery, RNA-binding proteins, mRNAs, and non-protein coding RNAs. In this review, we will discuss molecular mechanisms, signaling pathways, and targets of translational control that contribute to cellular adaptation to stress and to cell survival or death.


Subject(s)
Protein Biosynthesis , Signal Transduction , Animals , Protein Biosynthesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Death , Mammals/genetics
8.
Biochemistry (Mosc) ; 88(11): 1786-1799, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38105199

ABSTRACT

In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.


Subject(s)
Protein Biosynthesis , Stress Granules , RNA, Messenger/metabolism , Cytoplasmic Granules , Ribosomes/metabolism , Protein Synthesis Inhibitors/pharmacology , RNA-Binding Proteins/metabolism
9.
Immunol Invest ; 52(8): 1023-1038, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37962068

ABSTRACT

BACKGROUND: Autoimmune gastritis (AIG) is an autoimmune disease of the stomach characterized by the destruction of the oxyntic mucosa, which stops producing acid and becomes both functionally and morphologically atrophic. The pathogenic mechanisms behind the disease are still poorly understood. There is no early diagnosis and specific AIG therapy. To elucidate the pathogenesis of AIG, to search for early diagnostic markers, as well as to test new therapeutic approaches, an adequate and easily reproducible experimental model for autoimmune gastritis (EAG) is needed. Existing EAG models have some limitations, including slow development of signs, absence of advanced gastritis, irrational use of animals to obtain antigen. The aim was to find out whether it is possible to cause autoimmune gastritis similar to human disease in Wistar rats through immunization with a homologous gastric mucosa extract. METHODS: Wistar rats were immunized with gastric mucosa extract. Histology studies and evaluation of serological parameters were performed 56 and 91 days later. RESULTS: Destruction of oxyntic glands by infiltrating T lymphocytes were detected in rats on 56 and 91 days after initial immunization with gastric mucosa extract. Hyperplasia of enterochromaffin-like (ECL) cells was detected on the 91st day. Antral mucosa remained unchanged. CONCLUSION: Wistar rats, immunized with gastric mucosa extract, developed EAG similar to human AIG. The advantages of received EAG model are the ease of obtaining, the rapid development of oxyntic mucosa damage, which may progress to ECL cell hyperplasia.


Subject(s)
Autoimmune Diseases , Gastritis , Humans , Rats , Animals , Hyperplasia/pathology , Rats, Wistar , Gastric Mucosa/pathology
10.
Int J Biol Macromol ; 252: 126444, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37607652

ABSTRACT

Autoimmune gastritis (AIG) is the autoimmune disease of the stomach characterized by the destruction of the oxyntic mucosa, which stops producing acid and becomes both functionally and morphologically atrophic. There is no specific treatment for AIG. Previously, we identified a new immunoregulatory factor (regulatory rheumatoid factor (regRF)), the stimulation production of which reduces certain experimental autoimmune diseases. Epitopes specific to the regulatory rheumatoid factor (regRF epitopes) can be obtained on IgG Fc fragments. In the rat AIG model, the therapeutic efficacy of IgG Fc fragments bearing regRF epitopes was tested. Treatment with IgG Fc fragments bearing regRF epitopes reduced T lymphocytic infiltration of oxyntic mucosa and prevented its damage in the AIG rat model, while in rats treated with placebo, T lymphocytic infiltration of the mucosa, loss of parietal cells, including severe were observed. Therefore, IgG Fc fragments bearing regRF epitopes are a potential therapeutic agent for treating autoimmune gastritis in its early stages.


Subject(s)
Autoimmune Diseases , Gastritis , Rats , Animals , Rheumatoid Factor , Epitopes , Immunoglobulin Fc Fragments , Gastric Mucosa , Autoimmune Diseases/drug therapy , Gastritis/drug therapy , Immunoglobulin G
11.
bioRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37425921

ABSTRACT

Background: The origin and genesis of highly malignant and heterogenous glioblastoma brain tumors remain unknown. We previously identified an enhancer-associated long non-coding RNA, LINC01116 (named HOXDeRNA here), that is absent in the normal brain but is commonly expressed in malignant glioma. HOXDeRNA has a unique capacity to transform human astrocytes into glioma-like cells. This work aimed to investigate molecular events underlying the genome-wide function of this lncRNA in glial cell fate and transformation. Results: Using a combination of RNA-Seq, ChIRP-Seq, and ChIP-Seq, we now demonstrate that HOXDeRNA binds in trans to the promoters of genes encoding 44 glioma-specific transcription factors distributed throughout the genome and derepresses them by removing the Polycomb repressive complex 2 (PRC2). Among the activated transcription factors are the core neurodevelopmental regulators SOX2, OLIG2, POU3F2, and SALL2. This process requires an RNA quadruplex structure of HOXDeRNA that interacts with EZH2. Moreover, HOXDeRNA-induced astrocyte transformation is accompanied by the activation of multiple oncogenes such as EGFR, PDGFR, BRAF, and miR-21, and glioma-specific super-enhancers enriched for binding sites of glioma master transcription factors SOX2 and OLIG2. Conclusions: Our results demonstrate that HOXDeRNA overrides PRC2 repression of glioma core regulatory circuitry with RNA quadruplex structure. These findings help reconstruct the sequence of events underlying the process of astrocyte transformation and suggest a driving role for HOXDeRNA and a unifying RNA-dependent mechanism of gliomagenesis.

12.
Wiley Interdiscip Rev RNA ; 14(6): e1805, 2023.
Article in English | MEDLINE | ID: mdl-37406666

ABSTRACT

Transfer RNA (tRNA)-derived RNAs (tDRs) are a class of small non-coding RNAs that play important roles in different aspects of gene expression. These ubiquitous and heterogenous RNAs, which vary across different species and cell types, are proposed to regulate various biological processes. In this review, we will discuss aspects of their biogenesis, and specifically, their contribution into translational control. We will summarize diverse roles of tDRs and the molecular mechanisms underlying their functions in the regulation of protein synthesis and their impact on related events such as stress-induced translational reprogramming. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.


Subject(s)
Riboswitch , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA Interference , RNA Processing, Post-Transcriptional
13.
Mol Cell ; 83(7): 1180-1196.e8, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37028415

ABSTRACT

Proper defense against microbial infection depends on the controlled activation of the immune system. This is particularly important for the RIG-I-like receptors (RLRs), which recognize viral dsRNA and initiate antiviral innate immune responses with the potential of triggering systemic inflammation and immunopathology. Here, we show that stress granules (SGs), molecular condensates that form in response to various stresses including viral dsRNA, play key roles in the controlled activation of RLR signaling. Without the SG nucleators G3BP1/2 and UBAP2L, dsRNA triggers excessive inflammation and immune-mediated apoptosis. In addition to exogenous dsRNA, host-derived dsRNA generated in response to ADAR1 deficiency is also controlled by SG biology. Intriguingly, SGs can function beyond immune control by suppressing viral replication independently of the RLR pathway. These observations thus highlight the multi-functional nature of SGs as cellular "shock absorbers" that converge on protecting cell homeostasis by dampening both toxic immune response and viral replication.


Subject(s)
DNA Helicases , RNA Helicases , Humans , DNA Helicases/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Stress Granules , RNA Recognition Motif Proteins/metabolism , Immunity, Innate , Inflammation/metabolism , Cytoplasmic Granules/metabolism , Carrier Proteins/metabolism
15.
Cells ; 12(2)2023 01 08.
Article in English | MEDLINE | ID: mdl-36672194

ABSTRACT

Upon oxidative stress, mammalian cells rapidly reprogram their translation. This is accompanied by the formation of stress granules (SGs), cytoplasmic ribonucleoprotein condensates containing untranslated mRNA molecules, RNA-binding proteins, 40S ribosomal subunits, and a set of translation initiation factors. Here we show that arsenite-induced stress causes a dramatic increase in the stop-codon readthrough rate and significantly elevates translation reinitiation levels on uORF-containing and bicistronic mRNAs. We also report the recruitment of translation termination factors eRF1 and eRF3, as well as ribosome recycling and translation reinitiation factors ABCE1, eIF2D, MCT-1, and DENR to SGs upon arsenite treatment. Localization of these factors to SGs may contribute to a rapid resumption of mRNA translation after stress relief and SG disassembly. It may also suggest the presence of post-termination, recycling, or reinitiation complexes in SGs. This new layer of translational control under stress conditions, relying on the altered spatial distribution of translation factors between cellular compartments, is discussed.


Subject(s)
Arsenites , Animals , Codon, Terminator , Arsenites/pharmacology , Arsenites/metabolism , Ribosomes/metabolism , Stress Granules , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Oxidative Stress , Mammals/metabolism
16.
Nat Commun ; 14(1): 205, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639366

ABSTRACT

Guanine (G)-rich nucleic acids can fold into G-quadruplex (G4) structures under permissive conditions. Although many RNAs contain sequences that fold into RNA G4s (rG4s) in vitro, their folding and functions in vivo are not well understood. In this report, we showed that the folding of putative rG4s in human cells into rG4 structures is dynamically regulated under stress. By using high-throughput dimethylsulfate (DMS) probing, we identified hundreds of endogenous stress-induced rG4s, and validated them by using an rG4 pull-down approach. Our results demonstrate that stress-induced rG4s are enriched in mRNA 3'-untranslated regions and enhance mRNA stability. Furthermore, stress-induced rG4 folding is readily reversible upon stress removal. In summary, our study revealed the dynamic regulation of rG4 folding in human cells and suggested that widespread rG4 motifs may have a global regulatory impact on mRNA stability and cellular stress response.


Subject(s)
G-Quadruplexes , RNA , Humans , RNA/genetics , RNA/chemistry , RNA, Messenger/genetics , RNA Folding , RNA Stability
17.
Proc Natl Acad Sci U S A ; 120(4): e2216330120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36652478

ABSTRACT

Nonvesicular extracellular RNAs (nv-exRNAs) constitute the majority of the extracellular RNAome, but little is known about their stability, function, and potential use as disease biomarkers. Herein, we measured the stability of several naked RNAs when incubated in human serum, urine, and cerebrospinal fluid (CSF). We identified extracellularly produced tRNA-derived small RNAs (tDRs) with half-lives of several hours in CSF. Contrary to widespread assumptions, these intrinsically stable small RNAs are full-length tRNAs containing broken phosphodiester bonds (i.e., nicked tRNAs). Standard molecular biology protocols, including phenol-based RNA extraction and heat, induce the artifactual denaturation of nicked tRNAs and the consequent in vitro production of tDRs. Broken bonds are roadblocks for reverse transcriptases, preventing amplification and/or sequencing of nicked tRNAs in their native state. To solve this, we performed enzymatic repair of nicked tRNAs purified under native conditions, harnessing the intrinsic activity of phage and bacterial tRNA repair systems. Enzymatic repair regenerated an RNase R-resistant tRNA-sized band in northern blot and enabled RT-PCR amplification of full-length tRNAs. We also separated nicked tRNAs from tDRs by chromatographic methods under native conditions, identifying nicked tRNAs inside stressed cells and in vesicle-depleted human biofluids. Dissociation of nicked tRNAs produces single-stranded tDRs that can be spontaneously taken up by human epithelial cells, positioning stable nv-exRNAs as potentially relevant players in intercellular communication pathways.


Subject(s)
RNA, Transfer , RNA , Humans , RNA, Transfer/metabolism , Bacteria/metabolism , Epithelial Cells/metabolism
18.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361884

ABSTRACT

Under stress conditions, transfer RNAs (tRNAs) are cleaved by stress-responsive RNases such as angiogenin, generating tRNA-derived RNAs called tiRNAs. As tiRNAs contribute to cytoprotection through inhibition of translation and prevention of apoptosis, the regulation of tiRNA production is critical for cellular stress response. Here, we show that RTCB ligase complex (RTCB-LC), an RNA ligase complex involved in endoplasmic reticulum (ER) stress response and precursor tRNA splicing, negatively regulates stress-induced tiRNA production. Knockdown of RTCB significantly increased stress-induced tiRNA production, suggesting that RTCB-LC negatively regulates tiRNA production. Gel-purified tiRNAs were repaired to full-length tRNAs by RtcB in vitro, suggesting that RTCB-LC can generate full length tRNAs from tiRNAs. As RTCB-LC is inhibited under oxidative stress, we further investigated whether tiRNA production is promoted through the inhibition of RTCB-LC under oxidative stress. Although hydrogen peroxide (H2O2) itself did not induce tiRNA production, it rapidly boosted tiRNA production under the condition where stress-responsive RNases are activated. We propose a model of stress-induced tiRNA production consisting of two factors, a trigger and booster. This RTCB-LC-mediated boosting mechanism may contribute to the effective stress response in the cell.


Subject(s)
Hydrogen Peroxide , RNA, Transfer , Hydrogen Peroxide/pharmacology , RNA, Transfer/metabolism , Oxidative Stress , RNA Splicing , Ligases/genetics
19.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232640

ABSTRACT

The power of most of the enterobacterial O antigen types to provide robust protection against direct recognition of the cell surface by bacteriophage receptor-recognition proteins (RBP) has been recently recognized. The bacteriophages infecting O antigen producing strains of E. coli employ various strategies to tackle this nonspecific protection. T-even related phages, including RB49-like viruses, often have wide host ranges, being considered good candidates for use in phage therapy. However, the mechanisms by which these phages overcome the O antigen barrier remain unknown. We demonstrate here that RB49 and related phages Cognac49 and Whisky49 directly use certain types of O antigen as their primary receptors recognized by the virus long tail fibers (LTF) RBP gp38, so the O antigen becomes an attractant instead of an obstacle. Simultaneously to recognize multiple O antigen types, LTFs of each of these phages can bind to additional receptors, such as OmpA protein, enabling them to infect some rough strains of E. coli. We speculate that the mechanical force of the deployment of the short tail fibers (STF) triggered by the LTF binding to the O antigen or underneath of it, allows the receptor binding domains of STF to break through the O polysaccharide layer.


Subject(s)
Bacteriophages , Bacteriophage Receptors , Bacteriophages/metabolism , Escherichia coli/metabolism , Host Specificity , O Antigens/metabolism
20.
Sci Rep ; 12(1): 4288, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35277541

ABSTRACT

Bacteriophages related to phage Bp_AMP1 are the most widely spread group of phages infecting Burkholderia pseudomallei-the causative agent of melioidosis. These viruses are also infective against the nonpathogenic host Burkholderia thailandensis, allowing experimental work with them without any special safety precautions. The indirect data as well as the results of the mathematical modelling suggest that the AMP1-like viruses may act as natural biocontrol agents influencing the population levels of B. pseudomallei in soil and water habitats in endemic regions. The cold sensitivity of the lytic growth (CSg) of these phages was suggested to be an important feature modulating the effect of viral infection on host populations in nature. We performed genetic analysis to determine the molecular background of the CSg phenotype of the AMP1 phage. The results indicate that CSg is not due to the lack of any function or product missing at low temperature (25 °C) but results in growth inhibition by a phage-encoded temperature-sensitive genetic switch. We identified phage ORF3 and ORF14 to be involved in the genetic determination of this mechanism.


Subject(s)
Bacteriophages , Burkholderia pseudomallei , Burkholderia , Caudovirales , Melioidosis , Bacteriophages/genetics , Burkholderia pseudomallei/genetics , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...