Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters











Publication year range
1.
ACS Nano ; 18(36): 24941-24952, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39189799

ABSTRACT

Small metal-rich semiconducting quantum dots (QDs) are promising for solid-state lighting and single-photon emission due to their highly tunable yet narrow emission line widths. Nonetheless, the anionic ligands commonly employed to passivate these QDs exert a substantial influence on the optoelectronic characteristics, primarily owing to strong electron-phonon interactions. In this work, we combine time-domain density functional theory and nonadiabatic molecular dynamics to investigate the excited charge carrier dynamics of Cd28Se17X22 QDs (X = HCOO-, OH-, Cl-, and SH-) at ambient conditions. These chemically distinct but regularly used molecular groups influence the dynamic surface-ligand interfacial interactions in Cd-rich QDs, drastically modifying their vibrational characteristics. The strong electron-phonon coupling leads to substantial transient variations at the band edge states. The strength of these interactions closely depends on the physicochemical characteristics of passivating ligands. Consequently, the ligands largely control the nonradiative recombination rates and emission characteristics in these QDs. Our simulations indicate that Cd28Se17(OH)22 has the fastest nonradiative recombination rate due to the strongest electron-phonon interactions. Conversely, QDs passivated with thiolate or chloride exhibit considerably longer carrier lifetimes and suppressed nonradiative processes. The ligand-controlled electron-phonon interactions further give rise to the broadest and narrowest intrinsic optical line widths for OH and Cl-passivated single QDs, respectively. Obtained computational insights lay the groundwork for designing appropriate passivating ligands on metal-rich QDs, making them suitable for a wide range of applications, from blue LEDs to quantum emitters.

2.
Sensors (Basel) ; 24(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931493

ABSTRACT

The advent of nanotechnology has motivated a revolution in the development of miniaturized sensors. Such sensors can be used for radiation detection, temperature sensing, radio-frequency sensing, strain sensing, and more. At the nanoscale, integrating the materials of interest into sensing platforms can be a common issue. One promising platform is photonic crystal fibers, which can draw in optically sensitive nanoparticles or have its optical properties changed by specialized nanomaterials. However, testing these sensors at scale is limited by the the need for specialized equipment to integrate these photonic crystal fibers into optical fiber systems. Having a method to enable rapid prototyping of new nanoparticle-based sensors in photonic crystal fibers would open up the field to a wider range of laboratories that could not have initially studied these materials in such a way before. This manuscript discusses the improved processes for cleaving, drawing, and rapidly integrating nanoparticle-based photonic crystal fibers into optical system setups. The method proposed in this manuscript achieved the following innovations: cleaving at a quality needed for nanoparticle integration could be done more reliably (≈100% acceptable cleaving yield versus ≈50% conventionally), nanoparticles could be drawn at scale through photonic crystal fibers in a safe manner (a method to draw multiple photonic crystal fibers at scale versus one fiber at a time), and the new photonic crystal fiber mount was able to be finely adjusted when increasing the optical coupling before inserting it into an optical system (before, expensive fusion splicing was the only other method).

3.
Iran J Med Sci ; 49(4): 268-271, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38680226

ABSTRACT

Extensive chest wall defects occur in 28% of all sternal resection cases and are a major challenge in thoracic surgery. These cases are generally considered "critical defects" requiring primary or secondary reconstruction using various types of flaps, mesh repairs, bone autografts, or endoprosthesis. The past decade witnessed rapid advances in the application of personalized endoprostheses in thoracic surgery. Surgeons began to use carbon or titanium grafts for personalized sternum replacement. The main advantages of these implants are superior cosmetic effect, biocompatibility, and low risk of infection. Herein, we present a case of a 55-year-old patient with an indication for extended sternum resection due to metastatic thyroid cancer. The patient underwent extended sternum resection, followed by the implantation of a personalized microporous titanium sternum equipped with graspers for atraumatic rib fixation.


Subject(s)
Sternum , Titanium , Humans , Middle Aged , Titanium/therapeutic use , Sternum/surgery , Prostheses and Implants/standards , Male , Plastic Surgery Procedures/methods , Plastic Surgery Procedures/instrumentation , Thyroid Neoplasms/surgery
4.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38173312

ABSTRACT

Xanthomonas euvesicatoria is a major cause of bacterial spot disease in various crops. The present study was focused on the pathosystem pepper (Capsicum annuum L.) - X. euvesicatoria 269p (wild strain). The infectious process was studied using several different modes of in vivo inoculation under controlled conditions. The spread of the pathogen in different parts of the plants was monitored by a new qPCR procedure developed for the detection of X. euvesicatoria, as well as by re-isolation of viable bacterial cells. Photosynthesis, the number of viable pathogens, oxidative stress markers, activities of the main antioxidant enzymes, and levels of nonenzymatic antioxidants in the novel single-leaf model system were studied. The most important observation is that the invasion of the pathogen causes local infection and the dissemination of bacteria to the healthy parts of the host is blocked. The plants limit bacterial colonization around the entry points. Oxidative burst and alterations in antioxidant defenses are detected in infectious leaf lesions. Localized ROS overproduction resembles a hypersensitive response, but several differences can be observed. We assumed that pepper plants are more likely to manifest an intermediate phenotype, similar to lesions simulating disease or leaf flecking. By localizing the infection, possibly involving oxidative stress, the plant survives. However, the same applies to bacteria. The pathogen multiplies at the infection spots and is transmitted to other plants. Our conclusion is that the intermediate phenotype in the studied pathosystem is an example of long and successful co-evolution for both species.


Subject(s)
Capsicum , Xanthomonas , Antioxidants , Oxidative Stress , Food , Plant Leaves/genetics , Xanthomonas/genetics , Capsicum/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
5.
Plants (Basel) ; 12(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836088

ABSTRACT

The present study was focused on the pathosystem pepper plants (Capsicum annuum L.)-phytopathogenic bacterium X. euvesicatoria (wild strain 269p)-bacteriophage BsXeu269p/3 and the possibility of bacteriophage-mediated biocontrol of the disease. Two new model systems were designed for the monitoring of the effect of the phage treatment on the infectious process in vivo. The spread of the bacteriophage and the pathogen was monitored by qPCR. A new pair of primers for phage detection via qPCR was designed, as well as probes for TaqMan qPCR. The epiphytic bacterial population and the potential bacteriolytic effect of BsXeu269p/3 in vivo was observed by SEM. An aerosol-mediated transmission model system demonstrated that treatment with BsXeu269p/3 reduced the amount of X. euvesicatoria on the leaf surface five-fold. The needle-pricking model system showed a significant reduction of the amount of the pathogen in infectious lesions treated with BsXeu269p/3 (av. 59.7%), compared to the untreated control. We found that the phage titer is 10-fold higher in the infection lesions but it was still discoverable even in the absence of the specific host in the leaves. This is the first report of in vivo assessment of the biocontrol potential of locally isolated phages against BS pathogen X. euvesicatoria in Bulgaria.

7.
Nanoscale ; 15(15): 7176-7185, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37013402

ABSTRACT

While stoichiometric quantum dots (QDs) have been well studied, a significant knowledge gap remains in the atomistic understanding of the non-stoichiometric ones, which are predominantly present during the experimental synthesis. Here, we investigate the effect of thermal fluctuations on structural and vibrational properties of non-stoichiometric cadmium selenide (CdSe) nanoclusters: anion-rich (Se-rich) and cation-rich (Cd-rich) using ab initio molecular dynamics (AIMD) simulations. While the excess atoms on the surface fluctuate more for a given QD type, the optical phonon modes are mostly composed of Se atoms dynamics, irrespective of the composition. Moreover, Se-rich QDs have higher bandgap fluctuations compared to Cd-rich QDs, suggesting poor optical properties of Se-rich QDs. Additionally, non-adiabatic molecular dynamics (NAMD) suggests faster non-radiative recombination for Cd-rich QDs. Altogether, this work provides insights into the dynamic electronic properties of non-stoichiometric QDs and proposes a rationale for the observed optical stability and superiority of cation-rich candidates for light emission applications.

8.
Inorg Chem ; 62(1): 18-24, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36525652

ABSTRACT

The elusive octahedral hexapalladium Pd6(µ3-CO)4(PEt3)6 (1) was obtained by the reaction of Pd10(CO)12(PEt3)6 with TlCo(CO)4 in tetrahydrofuran under N2 at 55 °C. Its pseudo-Td octahedral structure, established from a CCD X-ray diffractometry study at 100 K, has the highest ideal symmetry of any of the characterized octahedral-based CO/PR3-ligated homopalladium Pdn clusters (n = 6, 7, 8, 10). Each Pd atom in 1 is coordinated to a PEt3 ligand, and each nonadjacent triangular Pd3 face is capped by a triply bridging µ3-CO ligand. The 31P{1H} NMR and IR spectra of 1 are in accordance with its solid-state molecular structure. Cluster 1 has a total of 80 cluster valence electrons (CVEs), the lowest reported for octahedral-based metal polyhedra that normally conform to the Wade-Mingos bonding rule with an 86 CVE count. Comparative density functional theory calculations involving natural population analysis are presented for trimethylphosphine analogues of the triethylphosphine (1-Me) and the previously reported octahedral hexapalladium trimethylphosphine Pd6(µ3-CO)4(PMe3)7 (2), which has pseudo-C2v symmetry with 82 total CVEs.

9.
Stem Cell Investig ; 9: 7, 2022.
Article in English | MEDLINE | ID: mdl-36393919

ABSTRACT

Numerous clinical studies have shown a wide clinical potential of mesenchymal stromal cells (MSCs) application. However, recent experience has accumulated numerous reports of adverse events and side effects associated with MSCs therapy. Furthermore, the strategies and methods of MSCs therapy did not change significantly in recent decades despite the clinical impact and awareness of potential complications. An extended understanding of limitations could lead to a wider clinical implementation of safe cell therapies and avoid harmful approaches. Therefore, our objective was to summarize the possible negative effects observed during MSCs-based therapies. We were also aimed to discuss the risks caused by weaknesses in cell processing, including isolation, culturing, and storage. Cell processing and cell culture could dramatically influence cell population profile, change protein expression and cell differentiation paving the way for future negative effects. Long-term cell culture led to accumulation of chromosomal abnormalities. Overdosed antibiotics in culture media enhanced the risk of mycoplasma contamination. Clinical trials reported thromboembolism and fibrosis as the most common adverse events of MSCs therapy. Their delayed manifestation generally depends on the patient's individual phenotype and requires specific awareness during the clinical trials with obligatory inclusion in the patient' informed consents. Finally we prepared the safety checklist, recommended for clinical specialists before administration or planning of MSCs therapy.

10.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36012579

ABSTRACT

Acute lung injury (ALI) as a model of acute respiratory distress syndrome is characterized by inflammation, complex coagulation, and hematologic abnormalities which result in the formation of fibrin-platelet microthrombi in the pulmonary vessels with the rapid development of progressive respiratory dysfunction. We hypothesize that a nebulized fibrinolytic agent, non-immunogenic staphylokinase (nSta), may be useful for ALI therapy. First, the effect of the nebulized nSta (0.2 mg/kg, 1.0 mg/kg, or 2.0 mg/kg) on the coagulogram parameters was studied in healthy rats. ALI was induced in mice by nebulized administration of lipopolysaccharide (LPS) at a dose of 10 mg/kg. nSta (0.2 mg/kg, 0.4 mg/kg or 0.6 mg/kg) was nebulized 30 min, 24 h, and 48 h after LPS administration. The level of pro-inflammatory cytokines was determined in the blood on the 8th day after LPS and nSta administration. The assessment of lung damage was based on their weighing and microscopic analysis. Fibrin/fibrinogen deposition in the lungs was determined by immunohistochemistry. After nSta nebulization in healthy rats, the fibrinogen blood level as well as activated partial thromboplastin time and prothrombin time did not change. In the nebulized ALI model, the mice showed an increase in lung weight due to their edema and rising fibrin deposition. An imbalance of proinflammatory cytokines was also found. Forty percent of mice with ALI without nSta nebulization had died. Nebulized nSta at a dose of 0.2 mg/kg reduced the severity of ALI: a decrease in interstitial edema and inflammatory infiltration was noted. At a dose of 0.4 mg/kg of nebulized nSta, the animals showed no peribronchial edema and the bronchi had an open clear lumen. At a dose of 0.6 mg/kg of nebulized nSta, the manifestations of ALI were completely eliminated. A significant dose-dependent reduction of the fibrin-positive areas in the lungs of mice with ALI was established. Nebulized nSta had a normalizing effect on the proinflammatory cytokines in blood- interleukin (IL)-1α, IL-17A, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). These data showed the effectiveness of nebulized nSta and the perspectives of its clinical usage in COVID-19 patients with acute respiratory distress syndrome (ARDS).


Subject(s)
Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Animals , Disease Models, Animal , Fibrin/pharmacology , Fibrinogen/therapeutic use , Lipopolysaccharides/toxicity , Lung , Metalloendopeptidases , Mice , Rats , Respiratory Distress Syndrome/drug therapy
11.
Clin Exp Pharmacol Physiol ; 49(10): 1116-1125, 2022 10.
Article in English | MEDLINE | ID: mdl-35748804

ABSTRACT

Signs of metabolic syndrome and prediabetes preceding type 2 diabetes are modelled in an experiment using a high-fat diet (HFD). The aim of this work was to study the effect of a low molecular weight systemically active nerve growth factor mimetic, compound GK-2 (hexamethylenediamide bis[N-monosuccinyl-L-glutamyl-L-lysine]), on indicators of abdominal obesity, basal blood glucose level, glucose tolerance, cholesterol and triglyceride blood levels, as well as the morphological structure of the liver in male Wistar rats fed a HFD. Rats were divided into three groups: one of them received standard food (control) and two others were fed a HFD containing 45% fat, 35% carbohydrates and 20% protein, with a total caloric value of 516 kcal/100 g, over 12 weeks. Starting from the ninth week, for the next 4 weeks, one of the HFD groups was treated orally with saline whilst the other group was treated orally with GK-2 at a dose of 5 mg/kg. GK-2 was found to reduce the basal glycaemia level and improve glucose tolerance, as well as to reduce the blood level of cholesterol by 30% and that of triglycerides by 28% in comparison with the saline-treated HFD animals. GK-2 reduced the degree of abdominal obesity to the level of the healthy animals and eliminated morphological abnormalities in the liver caused by the HFD. The results of the study determine the feasibility of further GK-2 research as a potential agent for prediabetes treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Animals , Blood Glucose/metabolism , Cholesterol , Diet, High-Fat/adverse effects , Glucose , Lipid Metabolism , Male , Molecular Weight , Nerve Growth Factor/metabolism , Obesity/drug therapy , Obesity, Abdominal , Prediabetic State/drug therapy , Rats , Rats, Wistar , Thinness
12.
Materials (Basel) ; 15(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35629503

ABSTRACT

This paper reports on the manufacturing of complex three-dimensional Si/C structures via a chemical vapor deposition method. The structure and properties of the grown materials were characterized using various techniques including scanning electron microscopy, aberration-corrected transmission electron microscopy, confocal Raman spectroscopy, and X-ray photoelectron spectroscopy. The spectroscopy results revealed that the grown materials were composed of micro/nanostructures with various compositions and dimensions. These included two-dimensional silicon carbide (SiC), cubic silicon, and various SiC polytypes. The coexistence of these phases at the nano-level and their interfaces can benefit several Si/C-based applications ranging from ceramics and structural applications to power electronics, aerospace, and high-temperature applications. With an average density of 7 mg/cm3, the grown materials can be considered ultralightweight, as they are three orders of magnitude lighter than bulk Si/C materials. This study aims to impact how ceramic materials are manufactured, which may lead to the design of new carbide materials or Si/C-based lightweight structures with additional functionalities and desired properties.

13.
Sensors (Basel) ; 22(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35459002

ABSTRACT

The manuscript presents an algorithm for the optimal estimation of the amplitude and propagation delay time of an ultra-wideband radio signal, in systems for the passive location of fixed targets based on the hybrid RSS/TDoA method in two-dimensional space with two base stations. The optimal estimate is based on the Bayesian strategy of maximum a posteriori probability density, taking into account a priori data on the statistical properties of the Line of Sight radio channel during Gaussian monocycle propagation. The Bayesian Cramer-Rao lower bound (BCRLB) of the delay time and the amplitude estimates for a time-discrete signal are calculated, and the resulting parameter estimate is compared with BCRLB. An algorithm has been developed for optimal estimation of distances from the radiation source to base stations, based on the results of the measurements of the amplitude and the propagation delay time of the UWB radio signal. The calculation of the statistical characteristics of the obtained estimate is carried out, and the functional dependence of the characteristics on various parameters is analyzed.

14.
Article in English | MEDLINE | ID: mdl-35240968

ABSTRACT

BACKGROUND: Growing pieces of evidence demonstrate a close relationship between type 2 diabetes (T2D) and neurodegenerative disorders such as Alzheimer's disease. The similarity of physiological and pathological processes occurring in pancreatic ß-cells and neurons over the course of these pathologies allows raising the question of the practicability of studying neuroprotective substances for their potential antidiabetic activity. OBJECTIVE: This review analyzes studies of antidiabetic and cytoprotective action on pancreatic ß- cells of the neuroprotective compounds that can attenuate the oxidative stress and enhance the expression of neurotrophins: low-molecular-weight NGF mimetic compound GK-2, selective anxiolytic afobazole, antidepressants lithium chloride, and lithium carbonate on the rat streptozotocin model of T2D. RESULTS: It was found that all the above-listed neuroprotective substances have a pronounced antidiabetic activity. The decrease in the ß-cells number, the average area of the pancreatic islets, as well as the violation of their morphological structure caused by the streptozotocin was significantly weakened by the therapy with the investigated neuroprotective substances. The extent of these morphological changes clearly correlates with the antihyperglycemic effect of these compounds. CONCLUSION: The presented data indicate that the neuroprotective substances attenuating the damaging effect of oxidative stress and neurotrophins deficit cannot only protect neurons but also exert their cytoprotective effect towards pancreatic ß-cells. These data may provide a theoretical basis for the further study of neuroprotective drugs as potential therapeutic options for T2D prevention and treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Neuroprotective Agents , Animals , Hypoglycemic Agents , Nerve Growth Factors , Rats , Streptozocin
15.
Langmuir ; 38(6): 2038-2045, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35119286

ABSTRACT

Amphiphilic block copolymers with weak polyelectrolyte blocks can assemble stimulus-responsive nanostructures and interfaces. Applications of these materials in drug delivery, biomimetics, and sensing largely rely on the well-understood swelling of polyelectrolyte chains upon deprotonation, often induced by changes in pH or ionic strength. This deprotonation can also tune interfacial interactions between the polyelectrolyte blocks and surrounding solution, an effect which is less studied than morphological swelling of polyelectrolytes but can be just as critical for intended function. Here, we investigate whether the pH-driven morphological response of polyelectrolyte-bearing nanostructures also affects the interactions of these nanostructures with molecules in solution, using micelles of a short-chain polybutadiene-block-poly(acrylic acid) (pBd-pAA) as a model system. We introduce a Förster resonance energy transfer (FRET) approach to probe interactions between micelles and fluorescent molecular solutes as a function of solution pH. As expected, the pAA corona of these pBd-pAA micelles increases in thickness monotonically as a function of pH. However, FRET efficiency, which provides a metric of the spatial proximity of fluorescently labeled micelles and freely diffusing fluorophores, exhibits complex nonmonotonic behavior as a function of pH, indicating that the average separation of micelles and acceptor fluorophores is not strictly correlated with micelle swelling. Dialysis experiments quantify the affinity of fluorophores for micelles as a function of pH, confirming that changes in FRET are driven almost entirely by the pH-dependent affinity of the pAA block for the investigated molecular fluorophores, not simply by a shape change of the pAA corona. This study provides key insights into the interfacial interactions between weak-polyelectrolyte-bearing nanostructures and molecular solutes, of importance for the development of their stimulus-responsive applications.


Subject(s)
Micelles , Polymers , Drug Delivery Systems , Hydrogen-Ion Concentration , Polyelectrolytes , Polymers/chemistry
16.
Nanoscale Horiz ; 7(3): 267-275, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-34908075

ABSTRACT

Developments in the field of nanoplasmonics have the potential to advance applications from information processing and telecommunications to light-based sensing. Traditionally, nanoscale noble metals such as gold and silver have been used to achieve the targeted enhancements in light-matter interactions that result from the presence of localized surface plasmons (LSPs). However, interest has recently shifted to intrinsically doped semiconductor nanocrystals (NCs) for their ability to display LSP resonances (LSPRs) over a much broader spectral range, including the infrared (IR). Among semiconducting plasmonic NCs, spinel metal oxides (sp-MOs) are an emerging class of materials with distinct advantages in accessing the telecommunications bands in the IR and affording useful environmental stability. Here, we report the plasmonic properties of Fe3O4 sp-MO NCs, known previously only for their magnetic functionality, and demonstrate their ability to modify the light-emission properties of telecom-emitting quantum dots (QDs). We establish the synthetic conditions for tuning sp-MO NC size, composition and doping characteristics, resulting in unprecedented tunability of electronic behavior and plasmonic response over 450 nm. In particular, with diameter-dependent variations in free-electron concentration across the Fe3O4 NC series, we introduce a strong NC size dependency onto the optical response. In addition, our observation of plasmonics-enhanced decay rates from telecom-emitting QDs reveals Purcell enhancement factors for simple plasmonic-spacer-emitter sandwich structures up to 51-fold, which are comparable to values achieved previously only for emitters in the visible range coupled with conventional noble metal NCs.

17.
Nanotechnology ; 33(12)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34879362

ABSTRACT

Nanoplates of Cu2WSe4(∼50 nm) were synthesized via a hot-injection method by one-pot selenation of WCl6and Cu(acac)2. This synthetic route provided another perspective towards the intrinsic electrochemical properties of Cu2MSe4(M = Mo or W), where their nanoparticles were previously synthesized via a metathesis route. Cations-dependent cathodic events and surface activation anodic events were identified by cyclic voltammetry in acetonitrile.

18.
Materials (Basel) ; 14(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34771957

ABSTRACT

In the present work, the mechanical properties of the DLD-processed Ti-6Al-4V alloy were obtained by tensile tests performed at different temperatures, ranging from 20 °C to 800 °C. Thereby, the process conditions were close to the conditions used to produce large-sized structures using the DLD method, resulting in specimens having the same initial martensitic microstructure. According to the obtained stress curves, the yield strength decreases gradually by 40% when the temperature is increased to 500 °C. Similar behavior is observed for the tensile strength. However, further heating above 500 °C leads to a significant increase in the softening rate. It was found that the DLD-processed Ti-6Al-4V alloy had a Young's modulus with higher thermal stability than conventionally processed alloys. At 500 °C, the Young's modulus of the DLD alloy was 46% higher than that of the wrought alloy. The influence of the thermal history on the stress relaxation for the cases where 500 °C and 700 °C were the maximum temperatures was studied. It was revealed that stress relaxation processes are decisive for the formation of residual stresses at temperatures above 700 °C, which is especially important for small-sized parts produced by the DLD method. The coefficient of thermal expansion was investigated up to 1050 °C.

19.
Nanotechnology ; 32(37)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34165443

ABSTRACT

The high theoretical lithium storage capacity of Sn makes it an enticing anode material for Li-ion batteries (LIBs); however, its large volumetric expansion during Li-Sn alloying must be addressed. Combining Sn with metals that are electrochemically inactive to lithium leads to intermetallics that can alleviate volumetric expansion issues and still enable high capacity. Here, we present the cycling behavior of a nanostructured MnSn2intermetallic used in LIBs. Nanostructured MnSn2is synthesized by reducing Sn and Mn salts using a hot injection method. The resulting MnSn2is characterized by x-ray diffraction and transmission electron microscopy and then is investigated as an anode for LIBs. The MnSn2electrode delivers a stable capacity of 514 mAh g-1after 100 cycles at a C/10 current rate with a Coulombic efficiency >99%. Unlike other Sn-intermetallic anodes, an activation overpotential peak near 0.9 V versus Li is present from the second lithiation and in subsequent cycles. We hypothesize that this effect is likely due to electrolyte reactions with segregated Mn from MnSn2. To prevent these undesirable Mn reactions with the electrolyte, a 5 nm TiO2protection layer is applied onto the MnSn2electrode surface via atomic layer deposition. The TiO2-coated MnSn2electrodes do not exhibit the activation overpotential peak. The protection layer also increases the capacity to 612 mAh g-1after 100 cycles at a C/10 current rate with a Coulombic efficiency >99%. This higher capacity is achieved by suppressing the parasitic reaction of Mn with the electrolyte, as is supported by x-ray photoelectron spectroscopy analysis.

20.
Adv Mater ; 33(24): e2008683, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33960040

ABSTRACT

Self-assembly of iron oxide nanoparticles (IONPs) into 1D chains is appealing, because of their biocompatibility and higher mobility compared to 2D/3D assemblies while traversing the circulatory passages and blood vessels for in vivo biomedical applications. In this work, parameters such as size, concentration, composition, and magnetic field, responsible for chain formation of IONPs in a dispersion as opposed to spatially confining substrates, are examined. In particular, the monodisperse 27 nm IONPs synthesized by an extended LaMer mechanism are shown to form chains at 4 mT, which are lengthened with applied field reaching 270 nm at 2.2 T. The chain lengths are completely reversible in field. Using a combination of scattering methods and reverse Monte Carlo simulations the formation of chains is directly visualized. The visualization of real-space IONPs assemblies formed in dispersions presents a novel tool for biomedical researchers. This allows for rapid exploration of the behavior of IONPs in solution in a broad parameter space and unambiguous extraction of ​the parameters of the equilibrium structures. Additionally, it can be extended to study novel assemblies formed by more complex geometries of IONPs.


Subject(s)
Ferric Compounds , Magnetite Nanoparticles , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL