Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(14): 3797-3800, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37450753

ABSTRACT

We show that optical moiré lattices enable the existence of vortex solitons of different types in self-focusing Kerr media. We address the properties of such states both in lattices having commensurate and incommensurate geometries (i.e., constructed with Pythagorean and non-Pythagorean twist angles, respectively), in the different regimes that occur below and above the localization-delocalization transition. We find that the threshold power required for the formation of vortex solitons strongly depends on the twist angle and, also, that the families of solitons exhibit intervals where their power is a nearly linear function of the propagation constant and they exhibit a strong stability. Also, in the incommensurate phase above the localization-delocalization transition, we found stable embedded vortex solitons whose propagation constants belong to the linear spectral domain of the system.

2.
Opt Lett ; 48(5): 1268-1271, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36857265

ABSTRACT

We address the formation of topological edge solitons in rotating Su-Schrieffer-Heeger waveguide arrays. The linear spectrum of the non-rotating topological array is characterized by the presence of a topological gap with two edge states residing in it. Rotation of the array significantly modifies the spectrum and may move these edge states out of the topological gap. Defocusing nonlinearity counteracts this tendency and shifts such modes back into the topological gap, where they acquire the structure of tails typical of topological edge states. We present rich bifurcation structure for rotating topological solitons and show that they can be stable. Rotation of the topologically trivial array, without edge states in its spectrum, also leads to the appearance of localized edge states, but in a trivial semi-infinite gap. Families of rotating edge solitons bifurcating from the trivial linear edge states exist too, and sufficiently strong defocusing nonlinearity can also drive them into the topological gap, qualitatively modifying the structure of their tails.

3.
Opt Lett ; 46(21): 5364-5367, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34724476

ABSTRACT

We consider an array of straight nonlinear waveguides constituting a two-dimensional square lattice, with a few central layers tilted with respect to the rest of the structure. It is shown that such a configuration represents a line defect in the lattice plane, which is periodically modulated along the propagation direction. In the linear limit, such a system sustains line defect modes, whose number coincides with the number of tilted layers. In the presence of nonlinearity, the branches of defect solitons propagating along the defect line bifurcate from each of the linear defect modes. Depending on the effective dispersion induced by the Floquet spectrum of the system, the bifurcating solitons can be either bright or dark. Dynamics and stability of such solitons are studied numerically.

4.
Opt Lett ; 46(19): 4710-4713, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34598180

ABSTRACT

We consider a topological Floquet insulator realized as a honeycomb array of helical waveguides imprinted in a weakly birefringent medium. The system accounts for four-wave mixing occurring at a series of resonances arising due to Floquet phase matching. Under these resonant conditions, the system sustains stable linearly polarized and metastable elliptically polarized two-component edge solitons. Coupled nonlinear equations describing the evolution of the envelopes of such solitons are derived.

5.
Science ; 370(6517): 701-704, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33154138

ABSTRACT

A hallmark feature of topological insulators is robust edge transport that is impervious to scattering at defects and lattice disorder. We demonstrate a topological system, using a photonic platform, in which the existence of the topological phase is brought about by optical nonlinearity. The lattice structure remains topologically trivial in the linear regime, but as the optical power is increased above a certain power threshold, the system is driven into the topologically nontrivial regime. This transition is marked by the transient emergence of a protected unidirectional transport channel along the edge of the structure. Our work studies topological properties of matter in the nonlinear regime, providing a possible route for the development of compact devices that harness topological features in an on-demand fashion.

6.
Phys Rev E ; 102(3-1): 032215, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33075994

ABSTRACT

We use the Gurevich-Pitaevskii approach based on the Whitham averaging method for studying the formation of dispersive shock waves in an intense light pulse propagating through a saturable nonlinear medium. Although the Whitham modulation equations cannot be diagonalized in this case, the main characteristics of the dispersive shock can be derived by means of an analysis of the properties of these equations at the boundaries of the shock. Our approach generalizes a previous analysis of steplike initial intensity distributions to a more realistic type of initial light pulse and makes it possible to determine, in a setting of experimental interest, the value of measurable quantities such as the wave-breaking time or the position and light intensity of the shock edges.

7.
Opt Lett ; 45(6): 1459-1462, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32163991

ABSTRACT

We describe topological edge solitons in a continuous dislocated Lieb array of helical waveguides. The linear Floquet spectrum of this structure is characterized by the presence of two topological gaps with edge states residing in them. A focusing nonlinearity enables families of topological edge solitons bifurcating from the linear edge states. Such solitons are localized both along and across the edge of the array. Due to the nonmonotonic dependence of the propagation constant of the edge states on the Bloch momentum, one can construct topological edge solitons that either propagate in different directions along the same boundary or do not move. This allows us to study collisions of edge solitons moving in opposite directions. Such solitons always interpenetrate each other without noticeable radiative losses; however, they exhibit a spatial shift that depends on the initial phase difference.

SELECTION OF CITATIONS
SEARCH DETAIL
...