Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36293221

ABSTRACT

Alzheimer's disease (AD), a progressive form of dementia, is characterized by the increased expression of secreted phospholipase A2 group IIA (GIIA) in the affected tissue and the dysfunction of neuronal mitochondria, similar to that induced by an orthologous GIIA from snake venom, ß-neurotoxic ammodytoxin (Atx), in the motor neurons. To advance our knowledge about the role of GIIA in AD, we studied the effect of rat GIIA on the neuronal mitochondria and compared it with that of the Atx. We produced recombinant rat GIIA (rGIIA) and its enzymatically inactive mutant, rGIIA(D49S), and demonstrated that they interact with the subunit II of cytochrome c oxidase (CCOX-II) as Atx. rGIIA and rGIIA(D49S) bound to this essential constituent of the respiratory chain complex with an approximately 100-fold lower affinity than Atx; nevertheless, both rGIIA molecules potently inhibited the CCOX activity in the isolated rat mitochondria. Like Atx, rGIIA was able to reach the mitochondria in the PC12 cells from the extracellular space, independent of its enzymatic activity. Consistently, the inhibition of the CCOX activity in the intact PC12 cells and in the rat's brain tissue sections was clearly demonstrated using rGIIA(D49S). Our results show that the effects of mammalian and snake venom ß-neurotoxic GIIA on the neuronal mitochondria have similar molecular backgrounds. They suggest that the elevated extracellular concentration of GIIA in the AD tissue drives the translocation of this enzyme into local neurons and their mitochondria to inhibit the activity of the CCOX in the respiratory chain. Consequently, the process of oxidative phosphorylation in the neurons is attenuated, eventually leading to their degeneration. Atx was thus revealed as a valuable molecular tool for further investigations of the role of GIIA in AD.


Subject(s)
Alzheimer Disease , Neurotoxicity Syndromes , Phospholipases A2, Secretory , Rats , Animals , Electron Transport Complex IV , PC12 Cells , Neurons , Mammals
2.
Toxins (Basel) ; 14(6)2022 05 28.
Article in English | MEDLINE | ID: mdl-35737036

ABSTRACT

ß-Neurotoxins are secreted phospholipase A2 molecules that inhibit transmission in neuromuscular synapses by poisoning the motor neurons. These toxins specifically and rapidly internalise into the nerve endings of motor neurons. Ammodytoxin (Atx) is a prototype ß-neurotoxin from the venom of the nose-horned viper (Vipera ammodytes ammodytes). Here, we studied the relevance of the enzymatic activity of Atx in cell internalisation and subsequent intracellular movement using transmission electron microscopy (TEM). We prepared a recombinant, enzymatically inactive mutant of Atx, Atx(D49S), labelled with gold nanoparticles (GNP), and incubated this with PC12 cells, to analyse its localisation by TEM. Atx(D49S)-GNP internalised into the cells. Inside the cells, Atx(D49S)-GNP was detected in different vesicle-like structures, cytosol, endoplasmic reticulum and mitochondria, where it was spotted in the intermembrane space and matrix. Co-localization of fluorescently labelled Atx(D49S) with mitochondria in PC12 cells by confocal fluorescence microscopy confirmed the reliability of results generated using Atx(D49S)-GNP and TEM and allowed us to conclude that the phospholipase activity of Atx is not obligatory for its cell internalisation and translocation into the mitochondrial intermembrane space and matrix.


Subject(s)
Metal Nanoparticles , Viperidae , Animals , Gold , Mitochondria , Neurotoxins/analysis , Phospholipases A2 , Rats , Reproducibility of Results , Viper Venoms/chemistry
3.
Int J Biol Sci ; 18(2): 873-888, 2022.
Article in English | MEDLINE | ID: mdl-35002531

ABSTRACT

Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.


Subject(s)
Phospholipases A2, Secretory/chemistry , Phospholipases A2, Secretory/metabolism , Carrier Proteins , Enzyme Activation , Humans , Signal Transduction , Structure-Activity Relationship
4.
Sci Rep ; 9(1): 283, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30670719

ABSTRACT

The ß-neurotoxic secreted phospholipases A2 (sPLA2s) block neuro-muscular transmission by poisoning nerve terminals. Damage inflicted by such sPLA2s (ß-ntx) on neuronal mitochondria is characteristic, very similar to that induced by structurally homologous endogenous group IIA sPLA2 when its activity is elevated, as, for example, in the early phase of Alzheimer's disease. Using ammodytoxin (Atx), the ß-ntx from the venom of the nose-horned viper (Vipera a. ammodytes), the sPLA2 receptor R25 has been detected in neuronal mitochondria. This receptor has been purified from porcine cerebral cortex mitochondria by a new Atx-affinity-based chromatographic procedure. Mass spectrometry analysis revealed R25 to be the subunit II of cytochrome c oxidase (CCOX), an essential constituent of the respiratory chain complex. CCOX was confirmed as being the first intracellular membrane receptor for sPLA2 by alternative Atx-affinity-labellings of purified CCOX, supported also by the encounter of Atx and CCOX in PC12 cells. This discovery suggests the explanation of the mechanism by which ß-ntx hinders production of ATP in poisoned nerve endings. It also provides a new insight into the potential function and dysfunction of endogenous GIIA sPLA2 in mitochondria.


Subject(s)
Electron Transport Complex IV/antagonists & inhibitors , Mitochondria/metabolism , Phospholipases A2, Secretory/pharmacology , Receptors, Phospholipase A2/analysis , Viper Venoms/enzymology , Animals , Cerebral Cortex/ultrastructure , Neurons/ultrastructure , Neurotoxicity Syndromes , PC12 Cells , Protein Subunits , Rats , Receptors, Phospholipase A2/isolation & purification , Swine , Viperidae
SELECTION OF CITATIONS
SEARCH DETAIL
...