Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 15542, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30341334

ABSTRACT

Photoconvertible fluorescent proteins (PCFPs) are widely used as markers for the visualization of intracellular processes and for sub-diffraction single-molecule localization microscopy. Although wild type of a new photoconvertible fluorescent protein SAASoti tends to aggregate, we succeeded, via rational mutagenesis, to obtain variants that formed either tetramers or monomers. We compare two approaches: one is based on the structural similarity between SAASoti and Kaede, which helped us to identify a single point mutation (V127T) at the protein's hydrophobic interface that leads to monomerization. The other is based on a chemical modification of amino groups of SAASoti with succinic anhydride, which converts the protein aggregates into monomers. Mass-spectrometric analysis helped us to identify that the modification of a single ε-amino group of lysine K145 in the strongly charged interface AB was sufficient to convert the protein into its tetrameric form. Furthermore, site-directed mutagenesis was used to generate mutants that proved to be either monomeric or tetrameric, both capable of rapid green-to-red photoconversion. This allows SAASoti to be used as a photoconvertible fluorescent marker for in vivo cell studies.


Subject(s)
Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mutagenesis, Site-Directed , Protein Multimerization , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Amino Acids/genetics , Luminescent Proteins/chemistry , Mass Spectrometry , Recombinant Proteins/chemistry
2.
Int J Mol Sci ; 16(7): 16642-54, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26204836

ABSTRACT

This article describes the genetically encoded caspase-3 FRET-sensor based on the terbium-binding peptide, cleavable linker with caspase-3 recognition site, and red fluorescent protein TagRFP. The engineered construction performs two induction-resonance energy transfer processes: from tryptophan of the terbium-binding peptide to Tb(3+) and from sensitized Tb(3+) to acceptor--the chromophore of TagRFP. Long-lived terbium-sensitized emission (microseconds), pulse excitation source, and time-resolved detection were utilized to eliminate directly excited TagRFP fluorescence and background cellular autofluorescence, which lasts a fraction of nanosecond, and thus to improve sensitivity of analyses. Furthermore the technique facilitates selective detection of fluorescence, induced by uncleaved acceptor emission. For the first time it was shown that fluorescence resonance energy transfer between sensitized terbium and TagRFP in the engineered construction can be studied via detection of microsecond TagRFP fluorescence intensities. The lifetime and distance distribution between donor and acceptor were calculated using molecular dynamics simulation. Using this data, quantum yield of terbium ions with binding peptide was estimated.


Subject(s)
Biosensing Techniques/methods , Caspase 3/chemistry , Fluorescence Resonance Energy Transfer/methods , Luminescent Proteins/chemistry , Terbium/pharmacology , Amino Acid Sequence , Caspase 3/genetics , Luminescent Proteins/genetics , Metalloproteins/chemistry , Metalloproteins/metabolism , Molecular Dynamics Simulation , Molecular Sequence Data , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Binding , Terbium/chemistry , Red Fluorescent Protein
3.
Proc Natl Acad Sci U S A ; 112(25): 7695-700, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26056262

ABSTRACT

Cytochrome c oxidases (Coxs) are the basic energy transducers in the respiratory chain of the majority of aerobic organisms. Coxs studied to date are redox-driven proton-pumping enzymes belonging to one of three subfamilies: A-, B-, and C-type oxidases. The C-type oxidases (cbb3 cytochromes), which are widespread among pathogenic bacteria, are the least understood. In particular, the proton-pumping machinery of these Coxs has not yet been elucidated despite the availability of X-ray structure information. Here, we report the discovery of the first (to our knowledge) sodium-pumping Cox (Scox), a cbb3 cytochrome from the extremely alkaliphilic bacterium Thioalkalivibrio versutus. This finding offers clues to the previously unknown structure of the ion-pumping channel in the C-type Coxs and provides insight into the functional properties of this enzyme.


Subject(s)
Electron Transport Complex IV/metabolism , Proteobacteria/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Electron Transport Complex IV/chemistry , Models, Molecular , Molecular Sequence Data , Protein Conformation
4.
J Biophotonics ; 3(12): 774-83, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20925107

ABSTRACT

Numerous processes in cells can be traced by using fluorescence resonance energy transfer (FRET) between two fluorescent proteins. The novel FRET pair including the red fluorescent protein TagRFP and kindling fluorescent protein KFP for sensing caspase-3 activity is developed. The lifetime mode of FRET measurements with a nonfluorescent protein KFP as an acceptor is used to minimize crosstalk due to its direct excitation. The red fluorescence is characterized by a better penetrability through the tissues and minimizes the cell autofluorescence signal. The effective transfection and expression of the FRET sensor in eukaryotic cells is shown by FLIM. The induction of apoptosis by camptothecine increases the fluorescence lifetime, which means effective cleavage of the FRET sensor by caspase-3. The instruments for detecting whole-body fluorescent lifetime imaging are described. Experiments on animals show distinct fluorescence lifetimes for the red fluorescent proteins possessing similar spectral properties.


Subject(s)
Eukaryotic Cells/pathology , Fluorescence Resonance Energy Transfer/methods , Luminescent Agents , Luminescent Proteins , Whole Body Imaging/methods , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Camptothecin/pharmacology , Caspase 3/metabolism , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Mice , Mice, Nude , Red Fluorescent Protein
5.
J Biochem Biophys Methods ; 70(4): 605-11, 2007 Jun 10.
Article in English | MEDLINE | ID: mdl-17355894

ABSTRACT

The effective new variant of "sandwich" bioluminescent enzyme immunoassay (BEIA) for the sensitive detection of glycoprotein B (gB) of pseudorabies virus (PrV) was presently developed. The high affinity interaction of barnase-barstar protein pair and photoprotein obelin as bioluminescent marker were for the first time successfully applied to BEIA development. Preliminary the two monoclonal antibodies, 11/5 and 34/2, were raised against gB for ELISA PrV detection. Presently we used the same immuno-"sandwich" principle for BEIA. To do this the two different bioconjugates were elaborated. Recombinant barnase was chemically conjugated with monoclonal anti-PrV's gB IgG, and also barstar was fused in frame to obelin. The characteristics of BEIA method have been compared to ELISA PrV detection. We have shown the proposed here gB-BEIA was 40-fold more sensitive as opposed to gB-ELISA test. The construction might have a broad promise in multiple potential immunological applications.


Subject(s)
Herpesvirus 1, Suid/isolation & purification , Animals , Bacterial Proteins/genetics , Cell Line , Cricetinae , Herpesvirus 1, Suid/genetics , Herpesvirus 1, Suid/growth & development , Immunoassay/methods , Luminescence , Luminescent Proteins/genetics , Open Reading Frames , Plasmids , RNA, Messenger/genetics , RNA, Messenger/isolation & purification , RNA, Viral/genetics , RNA, Viral/isolation & purification , Recombinant Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...