Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 129(1-2): 47-53, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22015543

ABSTRACT

Fast-growing strain of Mycobacterium sp. VKM Ac-1815D is capable of effective oxidizing of sterols (phytosterol, cholesterol, ergosterol) to androstenedione and other valuable 3-oxo-steroids. To elucidate the role of cholesterol oxidase in sterol catabolism by the strain, the choD gene has been cloned and sequenced. The deduced gene product (M(r) 63.5kDa) showed homologies over its entire length to a large number of proteins belonging to the InterPro-family EPR006076, which includes various FAD dependent oxidoreductases. The expression of choD in Escherichia coli was shown to result in the synthesis of membrane associated cholesterol oxidase. In addition to cholesterol, the enzyme oxidized ß-sitosterol, dehydroepiandrosterone, ergosterol, pregnenolone, and lithocholic acid. Knock-out of choD in Mycobacterium sp. VKM Ac-1815D strain was obtained by the gene replacement technique. The mutant strain transformed sitosterol forming exclusively 3-keto-4-ene steroids with androstenedione as a major product, thus evidencing that choD knock out did not abrogate sterol A-ring oxidation. The results indicated that ChoD is not a critical enzyme responsible for modification of 3ß-hydroxy-5-ene- to 3-keto-4-ene steroids in Mycobacterium sp. VKM Ac-1815D. Article from a special issue on steroids and microorganisms.


Subject(s)
Cholesterol Oxidase/metabolism , Mycobacterium/enzymology , Cholesterol Oxidase/genetics , Cloning, Molecular , Escherichia coli/enzymology , Sitosterols/metabolism , Sterols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...