Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-39234868

ABSTRACT

Organic-inorganic hybrid crystals have diverse functionalities, for example in energy storage and luminescence, due to their versatile structures. The synthesis and structural characterization of a new cobalt-vanadium-containing compound, 2[Co(en)3]3+(V4O13)6-·4H2O (1) is presented. The crystal structure of 1, consisting of [Co(en)3]3+ complexes and chains of corner-sharing (VO4) tetrahedra, was solved by single-crystal X-ray diffraction in the centrosymmetric space group P1. Phase purity of the bulk material was confirmed by infrared spectroscopy, scanning electron microscopy, elemental analysis and powder X-ray diffraction. The volume expansion of 1 was found to be close to 1% in the reported temperature range from 100 to 300 K, with a volume thermal expansion coefficient of 56 (2) × 10-6 K-1. The electronic band gap of 1 is 2.30 (1) eV, and magnetic susceptibility measurements showed that the compound exhibits a weak paramagnetic response down to 1.8 K, probably due to minor CoII impurities (<1%) on the CoIII site.

2.
J Am Chem Soc ; 146(34): 23729-23740, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39151091

ABSTRACT

Iridium dioxide (IrO2), ruthenium dioxide (RuO2), and their solid solutions (Ir1-xRuxO2) are very active electrocatalysts for the oxygen evolution reaction (OER). Efficient and facile synthesis of nanosized crystallites of these materials is of high significance for electrocatalytic applications for converting green energy to fuels (power-to-X). Here, we use in situ X-ray scattering to examine reaction conditions for different Ir and Ru precursors resulting in the development of a simple hydrothermal synthesis route using IrCl3 and KRuO4 to obtain homogeneous phase-pure Ir1-xRuxO2 nanocrystals. The solid solution nanocrystals can be obtained with a tunable composition of 0.2 < x < 1.0 and with ultra-small coherently scattering crystalline domains estimated from 1.3 to 2.6 nm in diameter based on PDF refinements. The in situ X-ray scattering data reveal a two-step formation mechanism, which involves the initial loss of chloride ligands followed by the formation of metal-oxygen octahedra clusters containing both Ir and Ru. These octahedra assemble with time resulting in long-range order resembling the rutile structure. The mixing of the metals on the atomic scale during the crystal formation presumably allows the formation of the solid solution rather than heterogeneous mixtures. The size of the final nanocrystals can be controlled by tuning the synthesis temperature. The facile hydrothermal synthesis route provides ultra-small nanoparticles with activity toward the OER in acidic electrolytes comparable to the best in the literature, and the optimal material composition very favorably combines low overpotential, high mass activity, and increased stability.

3.
Phys Chem Chem Phys ; 26(15): 12121-12132, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587495

ABSTRACT

Solvothermal synthesis presents a facile and highly flexible approach to chemical processing and it is widely used for preparation of micro- and nanosized inorganic materials. The large number of synthesis parameters in combination with the richness of inorganic chemistry means that it is difficult to predict or design synthesis outcomes, and it is demanding to uncover the effect of different parameters due to the sealed and complex nature of solvothermal reactors along with the time demands related to reactor cleaning, sample purification, and characterization. This study explores the effect on formation of crystalline products of six common anions in solvothermal treatment of aqueous and ethanolic precursors. Three different cations are included in the study (Mn2+, Co2+, Cu2+) representing chemical affinities towards different regions of the periodic table with respect to the hard soft acid base (HSAB) classification and the Goldschmidt classification. They additionally belong to the commonly used 3d transition metals and display a suitable variety in solvothermal chemistry to highlight anion effects. The results of the solvothermal in situ experiments demonstrate a clear effect of the precursor anions, with respect to whether crystallization occurs or not and the characteristics of the formed phases. Additionally, some of the anions are shown to be redox active and to influence the formation temperature of certain phases which in turn relates to the observed average crystallite sizes.

4.
Nanoscale ; 16(6): 3185-3190, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38264770

ABSTRACT

Phase-pure tetragonal ZrO2 nanoparticles have been prepared under simple solvothermal synthesis conditions using different types of alcohols as solvents and studied using in situ X-ray scattering. The variation of tetragonal/monoclinic phase ratios within the produced powders was directly correlated with the amount of in situ generated water from solvent dehydration during the syntheses. By controlling the dehydration kinetics, either choosing primary alcohols of varying thermal stability or by changing synthesis temperatures, it is possible to selectively tune this tetragonal/monoclinic phase ratio.

5.
IUCrJ ; 11(Pt 1): 82-91, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38096038

ABSTRACT

Our study compares short-range order parameters refined from the diffuse scattering in single-crystal X-ray and single-crystal electron diffraction data. Nb0.84CoSb was chosen as a reference material. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms were refined from the diffuse scattering using a Monte Carlo refinement in DISCUS. The difference between the Sb and Co displacements refined from the diffuse scattering and the Sb and Co displacements refined from the Bragg reflections in single-crystal X-ray diffraction data is 0.012 (7) Šfor the refinement on diffuse scattering in single-crystal X-ray diffraction data and 0.03 (2) Šfor the refinement on the diffuse scattering in single-crystal electron diffraction data. As electron diffraction requires much smaller crystals than X-ray diffraction, this opens up the possibility of refining short-range order parameters in many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available.

6.
Nanoscale ; 15(45): 18481-18488, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37942507

ABSTRACT

Pd possesses attractive catalytic properties and nano-structuring is an obvious way to enhance catalytic activity. Alloying Pd with Pb has been shown to enhance the catalytic effect of alcohol oxidation. Further optimization of the catalytic effect can be accomplished by controlling the particle size and key to this is understanding the formation mechanism. By monitoring solvothermal syntheses using in situ X-ray total scattering, this study unveils the formation mechanism of PbxPdy intermetallic nanoparticles. The formation occurs through a multi-step mechanism. Initially, Pd nanoparticles are formed, followed by incorporation of Pb into the Pd-structure, thus forming PbxPdy intermetallic nanoparticles. By varying the reaction time and temperature, the incorporation of Pb can be controlled, thereby tailoring the phase outcome. Based on the in situ solvothermal syntheses, ex situ autoclave syntheses were performed, resulting in the synthesis of Pb3Pd5 and Pb9Pd13 with a purity above 93%. The catalytic effect of these intermetallic phases towards the hydrogen evolution reaction (HER) is assessed. It is found that Pd, Pb3Pd5, and Pb9Pd13 have comparable stabilities, however, the overpotential increases with increasing amounts of Pb.

7.
Chemphyschem ; 24(23): e202300407, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37705300

ABSTRACT

X-ray scattering data measured on femtosecond timescales at the SACLA X-ray Free Electron Laser (XFEL) facility on a suspension of HfO2 nanoparticles in a liquid jet were used for pair distribution function (PDF) analysis. Despite a non-optimal experimental setup resulting in a modest Qmax of ~8 Å-1 , a promising PDF was obtained. The main features were reproduced when comparing the XFEL PDF to a PDF obtained from data measured at the PETRA III synchrotron light source. Refining structural parameters such as unit cell dimension and particle size from the XFEL PDF provided reliable values. Although the reachable Qmax limited the obtainable information, the present results indicate that good quality PDFs can be obtained on femtosecond timescales if the experimental conditions are further optimized. The study therefore encourages a new direction in ultrafast structural science where structural features of amorphous and disordered systems can be studied.

8.
J Am Chem Soc ; 145(38): 21053-21065, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37706460

ABSTRACT

Accurate structural models are of paramount importance for elucidating structure-property relationships in functional materials. Spinels (AB2O4) form a highly important family of materials with complex crystal structures, and subtle structural details have a critical bearing on understanding their physical properties. In some spinels, the space group symmetry is debated, and in general, point defects such as cation inversion and interstitials add complexity. Most studies of spinels concern powder materials, and this challenges deep structural characterization. In fact, most published spinel structures have dubious atomic displacement parameters (ADPs), which is a typical sign of problematic structural description in the refinement of diffraction data. Here, we use various X-ray and neutron diffraction techniques to establish a benchmark crystal structure for the essentially defect-free spinel ferrite ZnFe2O4, which is a widely studied frustrated magnet. It is shown that the appearance of Fd3̅m forbidden reflections in the ZnFe2O4 single-crystal neutron diffraction data is an artifact of multiple scattering rather than the loss of inversion symmetry. We then provide benchmark ADPs and demonstrate how strongly these parameters affect the refined cation inversion. The ADPs reported here may be used as reference data to test the soundness of refined structural models, possibly to constrain those based on suboptimal data quality, and thereby provide a more accurate fundamental understanding of the structure-property relationship in spinel-type materials.

9.
J Appl Crystallogr ; 56(Pt 3): 581-588, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37284256

ABSTRACT

Understanding the nucleation and growth mechanisms of nanocrystals under hydro- and solvothermal conditions is key to tailoring functional nanomaterials. High-energy and high-flux synchrotron radiation is ideal for characterization by powder X-ray diffraction and X-ray total scattering in real time. Different versions of batch-type cell reactors have been employed in this work, exploiting the robustness of polyimide-coated fused quartz tubes with an inner diameter of 0.7 mm, as they can withstand pressures up to 250 bar and temperatures up to 723 K for several hours. Reported here are recent developments of the in situ setups available for general users on the P21.1 beamline at PETRA III and the DanMAX beamline at MAX IV to study nucleation and growth phenomena in solvothermal synthesis. It is shown that data suitable for both reciprocal-space Rietveld refinement and direct-space pair distribution function refinement can be obtained on a timescale of 4 ms.

10.
Nanoscale ; 15(11): 5284-5292, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36810774

ABSTRACT

Gallium oxides are of broad interest due to their wide band gaps and attractive photoelectric properties. Typically, the synthesis of gallium oxide nanoparticles is based on a combination of solvent-based methods and subsequent calcination, but detailed information about solvent based formation processes is lacking, and this limits the tailoring of materials. Here we have examined the formation mechanisms and crystal structure transformations of gallium oxides during solvothermal synthesis using in situ X-ray diffraction. γ-Ga2O3 readily forms over a wide range of conditions. In contrast, ß-Ga2O3 only forms at high temperatures (T > 300 °C), and it is always preceded by γ-Ga2O3, indicating that γ-Ga2O3 is a crucial part of the formation mechanism of ß-Ga2O3. The activation energy for formation of ß-Ga2O3 from γ-Ga2O3 is determined to be 90-100 kJ mol-1 in ethanol, water and aqueous NaOH based on kinetic modelling of phase fractions obtained from multi-temperature in situ X-ray diffraction data. At low temperatures GaOOH and Ga5O7OH form in aqueous solvent, but these phases are also obtained from γ-Ga2O3. Systematic exploration of synthesis parameters such as temperature, heating rate, solvent and reaction time reveal that they all affect the resulting product. In general, the solvent based reaction paths are different from reports on solid state calcination studies. This underlines that the solvent is an active part of the solvothermal reactions and to a high degree determines different formation mechanisms.

11.
IUCrJ ; 10(Pt 1): 103-117, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36598506

ABSTRACT

Serial femtosecond crystallography for small-unit-cell systems has so far seen very limited application despite obvious scientific possibilities. This is because reliable data reduction has not been available for these challenging systems. In particular, important intensity corrections such as the partiality correction critically rely on accurate determination of the crystal orientation, which is complicated by the low number of diffraction spots for small-unit-cell crystals. A data reduction pipeline capable of fully automated handling of all steps of data reduction from spot harvesting to merged structure factors has been developed. The pipeline utilizes sparse indexing based on known unit-cell parameters, seed-skewness integration, intensity corrections including an overlap-based combined Ewald sphere width and partiality correction, and a dynamically adjusted post-refinement routine. Using the pipeline, data measured on the compound K4[Pt2(P2O5H2)4]·2H2O have been successfully reduced and used to solve the structure to an R1 factor of ∼9.1%. It is expected that the pipeline will open up the field of small-unit-cell serial femtosecond crystallography experiments and allow investigations into, for example, excited states and reaction intermediate chemistry.


Subject(s)
Crystallography , Data Collection
12.
Adv Mater ; 35(5): e2207152, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36418017

ABSTRACT

Magnetic materials with the spinel structure (A2+ B3+ 2 O4 ) form the core of numerous magnetic devices, and ZnFe2 O4 constitutes a peculiar example where the nature of the magnetism is still unresolved. Susceptibility measurements revealed a cusp around Tc  = 13 K resembling an antiferromagnetic transition, despite the positive Curie-Weiss temperature determined to be ΘCW  = 102.8(1) K. Bifurcation of field-cooled and zero-field-cooled data below Tc in conjunction with a frequency dependence of the peak position and a non-zero imaginary component below Tc shows it is in fact associated with a spin-glass transition. Highly structured magnetic diffuse neutron scattering from single crystals develops between 50 K and 25 K revealing the presence of magnetic disorder which is correlated in nature. Here, the 3D-mΔPDF method is used to visualize the local magnetic ordering preferences, and ferromagnetic nearest-neighbor and antiferromagnetic third nearest-neighbor correlations are shown to be dominant. Their temperature dependence is extraordinary with some flipping in sign and a strongly varying correlation length. The correlations can be explained by orbital interaction mechanisms for the magnetic pathways and a preferred spin cluster. This study demonstrates the power of the 3D-mΔPDF method in visualizing complex quantum phenomena thereby providing a way to obtain an atomic-scale understanding of magnetic frustration.

13.
Chem Sci ; 13(43): 12883-12891, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36519061

ABSTRACT

The structures of metal ions in solution constitute essential information for obtaining chemical insight spanning from catalytic reaction mechanisms to formation of functional nanomaterials. Here, we explore Zr4+ solution structures using X-ray pair distribution function (PDF) analysis across pH (0-14), concentrations (0.1-1.5 M), solvents (water, methanol, ethanol, acetonitrile) and metal sources (ZrCl4, ZrOCl2·8H2O, ZrO(NO3)2·xH2O). In water, [Zr4(OH)8(OH2)16]8+-tetramers are predominant, while non-aqueous solvents contain monomeric complexes. The PDF analysis also reveals second sphere coordination of chloride counter ions to the aqueous tetramers. The results are reproducible across data measured at three different beamlines at the PETRA-III and MAX IV synchrotron light sources.

14.
Dalton Trans ; 51(45): 17488-17495, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36331388

ABSTRACT

Ge1-xSnx nanoparticles are interesting for a variety of different optoelectronic devices, however, the synthesis normally involves highly inert conditions, making it less available and promising for future industry implementation. Here, a new non-inert synthesis route is presented which involves preparation of the synthesis under ambient conditions followed by a reaction in autoclaves at temperatures between 400 °C and 500 °C and pressures between 52 bar and 290 bar. The product formation is also investigated with in situ powder X-ray diffraction (PXRD) to study the effect of the reaction parameters in more detail, e.g. showing that the Sn-precursor catalyzes the reaction. The synthesized phase pure Ge1-xSnx nanoparticles have Sn concentrations ranging from 0 to ∼4% and crystallite sizes ranging from approximately 11 nm to 25 nm. If the Sn-precursor concentration is increased further, ß-Sn is formed as an impurity phase accompanied by an increase in the size of the Ge1-xSnx particles, making sizes of up to about 55 nm available.

15.
Chem Commun (Camb) ; 58(91): 12672-12675, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36286342

ABSTRACT

High entropy alloy (HEA) nanoparticles hold promise in heterogeneous catalysis, and recently, simple and benign solvothermal synthesis was achieved for the equimolar PtIrPdRhRu. Here we experimentally explore the available composition space in this system, and we find that single-phase products can be obtained at significant deviations from the equimolar case.

16.
Dalton Trans ; 51(35): 13515-13526, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35997150

ABSTRACT

A series of small, middle, and large anatase TiO2 particles were synthesized through the hydrolysis of titanium tetraisopropoxide (TTIP) to investigate the size-related chemical bond length and strength variation. Unit cell volume contraction with decreasing particle size is identified from Rietveld refinement of high-resolution synchrotron powder X-ray diffraction (PXRD) patterns. More titanium vacancies are also found for smaller anatase particles. Contrary to the variation in unit cell volume, a larger Debye temperature ΘD(TiO2) derived from the linear and nonlinear fitting of atomic displacement parameters (Uiso(TiO2)) as a function of temperature is revealed for smaller anatase particles. The length of the Ti-O bond is also shorter for smaller anatase particles. Furthermore, optical phonon frequencies blue-shifting with the decrease in anatase particle size are determined by Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) analysis rules out the presence of a large amount of Ti3+, while optical diffuse reflectance measurement eliminates the existence of a large number of oxygen vacancies in all particles. Combining the analysis results of PXRD, thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR), more structural and surface hydroxyls (-OH) appear to exist in smaller anatase particles. It is the structural and surface -OH that are responsible for the size-related chemical bond length and strength variation in the as-synthesized anatase particles.

17.
ACS Appl Mater Interfaces ; 14(27): 31024-31034, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35776768

ABSTRACT

N-type Mg3(Sb,Bi)2 compounds have recently been demonstrated as promising low-cost efficient thermoelectric materials in low and intermediate temperature ranges; however, the thermal stability of this type of material still poses a great challenge for practical applications. In this work, we conduct a systematic investigation of the thermal stability of several high-performing n-type Mg3(Sb,Bi)2-based thermoelectric materials in both bulk and powdered forms using X-ray and neutron diffraction. It is found that the bulk sample exhibits a much slower degradation rate based on the evolution of the secondary Bi/Sb phase in comparison with the powdered sample, revealing a clear kinetic effect. Moreover, the surface of the bulk sample will gradually become Mg-poor or Bi-rich even at room temperature when exposed to air for a long time, highlighting the importance of surface encapsulation for applications. An underlying mechanism based on the Mg loss/migration is proposed to account for the property degradation. Importantly, to address the property degradation, we discuss possible solutions and propose Mg-vapor annealing as an effective approach to enhance thermal stability by suppressing the Mg loss/migration through saturating grains and grain boundaries with elemental Mg. We expect a combination of the Mg-vapor annealing and surface coating to further improve the long-term thermal stability. This work sheds light on the strategies for enhancing the long-term stability of n-type Mg3Sb2-based thermoelectrics for practical applications.

18.
IUCrJ ; 9(Pt 4): 523-532, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35844472

ABSTRACT

The scattering pattern of a crystal obeys the symmetry of the crystal structure through the corresponding Laue group. This is usually also true for the diffuse scattering, containing information about disorder, but here a case is reported where the diffuse scattering is of lower symmetry than the parent crystal structure. The mineral bixbyite has been studied by X-ray and neutron scattering techniques since 1928 with some of the most recent studies characterizing the low-temperature transition to a magnetically disordered spin-glass state. However, bixbyite also exhibits structural disorder, and here single-crystal X-ray and neutron scattering is used to characterize the different modes of disorder present. One-dimensional rods of diffuse scattering are observed in the cubic mineral bixbyite, which break the expected symmetry of the scattering pattern. It is shown that this scattering arises from epitaxial intergrowths of the related mineral, braunite. The presence of this disorder mode is found to be directly observable as well-defined residuals in the average structure refined against the Bragg diffraction. An additional three-dimensional diffuse scattering component is observed in neutron scattering data, which is shown to originate from the substitutional disorder on the Fe/Mn sites. This occupational disorder gives rise to local relaxations of the oxide sublattice, and the pattern of oxide displacements can be rationalized based on crystal-field theory. The combined use of neutron and X-ray single-crystal scattering techniques highlights their great complementarity. In particular, the large sample requirements for neutron scattering experiments prove to be an obstacle in solving the intergrowth disorder due to several growth orientations, whereas for X-ray scattering the one-dimensional nature of the intergrowth disorder renders solving this a more tractable task. On the other hand, the oxide relaxations cannot be resolved using X-rays due to the low Mn/Fe contrast. By combining the two approaches both types of disorder have been characterized.

19.
Inorg Chem ; 61(23): 8760-8766, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35649247

ABSTRACT

A highly reproducible, simple, and inexpensive synthesis method for obtaining phase-pure thermochromic monoclinic VO2 (M1) is presented. Vanadium(III) oxide and ammonium metavanadate were used as starting materials and no additional reducing agents are required. Heating a mixture of these two components under an argon atmosphere at 750 °C for 2-4 h provides the direct formation of VO2 (M1) without detectable impurity phases. The formation reaction of VO2 (M1) was studied using in situ powder X-ray diffraction (PXRD), where a pressed pellet of the precursor material was heated during the continuous collection of PXRD data on a two-dimensional detector. The formation takes place via at least two crystalline intermediate phases where the first forms at 170-185 °C (likely an ammonium and oxygen deficient (NH4)1-δVO3-δ phase), and the second at 230 °C (likely a more disordered phase due to the increased background intensity). We assume that the solid-state reaction between the unknown but likely disordered vanadate phase and vanadium(III) oxide starts at 395 °C in concert with the appearance of several other unknown crystalline phases. At 610-750 °C, phase-pure rutile VO2 (P42/mnm) is obtained, which upon cooling converts to monoclinic VO2 (M1). The product composition, microstructure, and homogeneity are characterized by Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The synthesized VO2 (M1) has a sharp reversible insulator-to-metal transition at 71.3 °C during heating and 59.5 °C during cooling, as characterized using differential scanning calorimetry, and resistivity and magnetic property measurements.

20.
Angew Chem Int Ed Engl ; 61(22): e202202742, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35286738

ABSTRACT

Glass-forming metal-organic frameworks (MOFs) have novel applications, but the origin of their peculiar melting behavior is unclear. Here, we report synchrotron X-ray diffraction electron densities of two zeolitic imidazolate frameworks (ZIFs), the glass-forming Zn-ZIF-zni and the isostructural thermally decomposing Co-ZIF-zni. Electron density analysis shows that the Zn-N bonds are more ionic than the Co-N bonds, which have distinct covalent features. Variable-temperature Raman spectra reveal the onset of significant imidazolate bond weakening in Co-ZIF-zni above 673 K. Melting can be controlled by tuning the metal-ligand and imidazole bonding strength as shown from thermal analysis of nine solid-solution Cox Zn1-x -ZIF-zni (x=0.3 to 0.003) MOFs, and a mere 4 % Co-doping into Zn-ZIF-zni results in thermal decomposition instead of melting. The present findings demonstrate the key role of the metal-ligand bonds and imidazolate bonds in controlling the delicate balance between melting and decomposition processes in this class of ZIF compounds.

SELECTION OF CITATIONS
SEARCH DETAIL