Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(46): 25068-25073, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37939007

ABSTRACT

Synthetic porous materials continue to garner attention as platforms for solid-state chemistry and as designer heterogeneous catalysts. Applications in photochemistry and photocatalysis, however, are plagued by poor light harvesting efficiency due to light scattering resulting from sample microcrystallinity and poor optical penetration that arises from inner filter effects. Here we demonstrate the layer-by-layer growth of optically transparent, photochemically active thin films of porous salts. Films are grown by sequential deposition of cationic Zr-based porous coordination cages and anionic Mn porphyrins. Photolysis facilitates the efficient reduction of Mn(III) sites to Mn(II) sites, which can be observed in real-time by transmission UV-vis spectroscopy. Film porosity enables substrate access to the Mn(II) sites and facilitates reversible O2 activation in the solid state. These results establish optically transparent, porous salt thin films as versatile platforms for solid-state photochemistry and in operando spectroscopy.

2.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645821

ABSTRACT

Prior work suggests influenza A virus (IAV) crosses the airway mucus barrier in a sialic acid-dependent manner through the actions of the viral envelope proteins, hemagglutinin and neuraminidase. However, host and viral factors that influence how efficiently mucus traps IAV remain poorly defined. In this work, we assessed how the physicochemical properties of mucus influence its ability to effectively capture IAV with altered sialic acid preference using fluorescence video microscopy and multiple particle tracking. We found an airway mucus gel layer must be produced with pores on the order of size of the virus to physically constrain IAV. Sialic acid binding by IAV also improves mucus trapping efficiency, but interestingly, sialic acid preferences had little impact on the fraction of IAV particles expected to penetrate the mucus barrier. Together, this work provides new insights on mucus barrier function toward IAV with important implications on innate host defense and interspecies transmission.

3.
ACS Appl Mater Interfaces ; 15(12): 16046-16054, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36926807

ABSTRACT

Photopolymer additive manufacturing has become the subject of widespread interest in recent years due to its capacity to enable fabrication of difficult geometries that are impossible to build with traditional manufacturing methods. The flammability of photopolymer resin materials and the lattice structures enabled by 3D printing is a barrier to widespread adoption that has not yet been adequately addressed. Here, a water-based nanobrick wall coating is deposited on 3D printed parts with simple (i.e., dense solid) or complex (i.e., lattice) geometries. When subject to flammability testing, the printed parts exhibit no melt dripping and a propensity toward failure at the print layer interfaces. Moving from a simple solid geometry to a latticed geometry leads to reduced time to failure during flammability testing. For nonlatticed parts, the coating provides negligible improvement in fire resistance, but coating of the latticed structures significantly increases time to failure by up to ≈340% compared to the uncoated lattice. The synergistic effect of coating and latticing is attributed to the lattice structures' increased surface area to volume ratio, allowing for an increased coating:photopolymer ratio and the ability of the lattice to better accommodate thermal expansion strains. Overall, nanobrick wall coated lattices can serve as metamaterials to increase applications of polymer additive manufacturing in extreme environments.

4.
ACS Appl Eng Mater ; 1(9): 2429-2439, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-38356862

ABSTRACT

Current thermally conductive and electrically insulating insulation systems are struggling to meet the needs of modern electronics due to increasing heat generation and power densities. Little research has focused on creating insulation systems that excel at both dissipating heat and withstanding high voltages (i.e., have both high thermal conductivity and a high breakdown strength). Herein, a polyelectrolyte-based multilayer nanocomposite is demonstrated to be a thermally conductive high-voltage insulation. Through inclusion of both boehmite and vermiculite clay, the breakdown strength of the nanocomposite was increased by ≈115%. It was also found that this unique nanocomposite has an increase in its breakdown strength, modulus, and hydrophobicity when exposed to elevated temperatures. This readily scalable insulation exhibits a remarkable combination of breakdown strength (250 kV/mm) and thermal conductivity (0.16 W m-1 K-1) for a polyelectrolyte-based nanocomposite. This dual clay insulation is a step toward meeting the needs of the next generation of high-performance insulation systems.

5.
Sci Adv ; 8(47): eabq5049, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36427316

ABSTRACT

Secreted mucus is a frontline defense against respiratory infection, enabling the capture and swift removal of infectious or irritating agents from the lungs. Airway mucus is composed of two mucins: mucin 5B (MUC5B) and 5AC (MUC5AC). Together, they form a hydrogel that can be actively transported by cilia along the airway surface. In chronic respiratory diseases, abnormal expression of these mucins is directly implicated in dysfunctional mucus clearance. Yet, the role of each mucin in supporting normal mucus transport remains unclear. Here, we generate human airway epithelial tissue cultures deficient in either MUC5B or MUC5AC to understand their individual contributions to mucus transport. We find that MUC5B and MUC5AC deficiency results in impaired and discoordinated mucociliary transport, respectively, demonstrating the importance of each mucin to airway clearance.


Subject(s)
Mucin-5B , Respiratory Tract Infections , Humans , Mucin-5B/genetics , Mucociliary Clearance , Epithelium , Cilia , Mucin 5AC/genetics
6.
Curr Protoc ; 2(6): e453, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35671174

ABSTRACT

A diverse collection of viral pathogens target airway epithelial cells for infection, with effects ranging from mild upper respiratory tract symptoms to death of the infected individual. Among these pathogens are recently discovered and/or emergent viruses that sometimes fail to infect commonly used, immortalized cell lines and for which infection phenotypes in the respiratory tract remain unknown. Human airway epithelial cultures have been developed over the past several decades and have proven to be a useful model system in culturing hard-to-grow viruses and assaying various features of infection in a physiologically relevant setting. This article includes methods for the generation of well-differentiated human airway epithelial cell cultures at air-liquid interface that recapitulate the mucosal epithelium of the trachea/bronchus in vivo. We further detail inoculation of these cultures with respiratory viruses-specifically rhinovirus, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-and provide a protocol for the detection of double-stranded RNA or viral antigen-positive cells by immunofluorescence microscopy. These techniques, together with a post-imaging analysis, can be applied to characterize the efficiency of infection and kinetics of spread within the airway epithelium. Furthermore, these methods can be utilized in conjunction with antibodies against cellular targets to determine cell tropism and colocalization with specific host factors during infection. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of human airway epithelial cultures at air-liquid interface (HAE-ALI) Basic Protocol 2: Viral inoculation of HAE-ALI Basic Protocol 3: Immunofluorescence (IF)-based detection of infected cells in HAE-ALI.


Subject(s)
COVID-19 , SARS-CoV-2 , Epithelial Cells , Fluorescent Antibody Technique , Humans , Respiratory System
7.
mBio ; 13(4): e0105522, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35699372

ABSTRACT

Influenza A virus (IAV) causes significant morbidity and mortality in the human population. Tethered mucin 1 (MUC1) is highly expressed in airway epithelium, the primary site of IAV replication, and also by other cell types that influence IAV infection, including macrophages. MUC1 has the potential to influence infection dynamics through physical interactions and/or signaling activity, yet MUC1 modulation and its impact during viral pathogenesis remain unclear. Thus, we investigated MUC1-IAV interactions in an in vitro model of human airway epithelium (HAE). Our data indicate that a recombinant IAV hemagglutinin (H3) and H3N2 virus can bind endogenous HAE MUC1. Notably, infection of HAE with H1N1 or H3N2 IAV strains does not trigger MUC1 shedding but instead stimulates an increase in cell-associated MUC1 protein. We observed a similar increase after type I or III interferon (IFN) stimulation; however, inhibition of IFN signaling during H1N1 infection only partially abrogated this increase, indicating that multiple soluble factors contribute to MUC1 upregulation during the antiviral response. In addition to HAE, primary human monocyte-derived macrophages also upregulated MUC1 protein in response to IFN treatment and conditioned media from IAV-infected HAE. Then, to determine the impact of MUC1 on IAV pathogenesis, we developed HAE genetically depleted of MUC1 and found that MUC1 knockout cultures exhibited enhanced viral growth compared to control cultures for several IAV strains. Together, our data support a model whereby MUC1 inhibits productive uptake of IAV in HAE. Infection then stimulates MUC1 expression on multiple cell types through IFN-dependent and -independent mechanisms that further impact infection dynamics. IMPORTANCE Influenza A virus (IAV) targets airway epithelial cells for infection. Large, heavily glycosylated molecules known as tethered mucins extend from the airway epithelial cell surface and may physically restrict pathogen access to underlying cells. Additionally, tethered mucin 1 (MUC1) can be differentially phosphorylated based on external stimuli and can influence inflammation. Given MUC1's multifunctional capability, we sought to define its role during IAV infection. Here, we demonstrate that IAV directly interacts with MUC1 in a physiologically relevant model of human airway epithelium (HAE) and find that MUC1 protein expression is elevated throughout the epithelium and in primary human monocyte-derived macrophages in response to antiviral signals produced during infection. Using CRISPR/Cas9-modified HAE, we demonstrated more efficient IAV infection when MUC1 is genetically ablated. Our data suggest that MUC1 physically restricts IAV uptake and represents a dynamic component of the host response that acts to inhibit viral spread, yielding new insight into mucin-mediated antiviral defense.


Subject(s)
Influenza A virus , Influenza, Human , Mucin-1 , Antiviral Agents/pharmacology , Epithelium , Host-Pathogen Interactions , Humans , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza A virus/physiology , Influenza, Human/metabolism , Interferons/pharmacology , Mucin-1/genetics , Mucin-1/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Virus Replication
8.
Commun Biol ; 5(1): 249, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35318436

ABSTRACT

Mucus in the lung plays an essential role as a barrier to infection by viral pathogens such as influenza A virus (IAV). Previous work determined mucin-associated sialic acid acts as a decoy receptor for IAV hemagglutinin (HA) binding and the sialic-acid cleaving enzyme, neuraminidase (NA), facilitates virus passage through mucus. However, it has yet to be fully addressed how the physical structure of the mucus gel influences its barrier function and its ability to trap viruses via glycan mediated interactions to prevent infection. To address this, IAV and nanoparticle diffusion in human airway mucus and mucin-based hydrogels is quantified using fluorescence video microscopy. We find the mobility of IAV in mucus is significantly influenced by the mesh structure of the gel and in contrast to prior reports, these effects likely influence virus passage through mucus gels to a greater extent than HA and NA activity. In addition, an analytical approach is developed to estimate the binding affinity of IAV to the mucus meshwork, yielding dissociation constants in the mM range, indicative of weak IAV-mucus binding. Our results provide important insights on how the adhesive and physical barrier properties of mucus influence the dissemination of IAV within the lung microenvironment.


Subject(s)
Influenza A virus , Gels , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A virus/physiology , Mucins/metabolism , Mucus/metabolism , N-Acetylneuraminic Acid/metabolism
9.
ACS Biomater Sci Eng ; 7(6): 2723-2733, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33871978

ABSTRACT

As asthma worsens, occlusion of airways with mucus significantly contributes to airflow obstruction and reduced lung function. Recent evidence from clinical studies has shown mucus obtained from adults and children with asthma possesses altered mucin composition. However, how these changes alter the functional properties of the mucus gel is not yet fully understood. To study this, we have engineered a synthetic mucus biomaterial to closely mimic the properties of native mucus in health and disease. We demonstrate that this model possesses comparable biophysical and transport properties to native mucus ex vivo collected from human subjects and in vitro isolated from human airway epithelial (HAE) tissue cultures. We found by systematically varying mucin composition that mucus gel viscoelasticity is enhanced when predominantly composed of mucin 5AC (MUC5AC), as is observed in asthma. As a result, asthma-like synthetic mucus gels are more slowly transported on the surface of HAE tissue cultures and at a similar rate to native mucus produced by HAE cultures stimulated with type 2 cytokine IL-13, known to contribute to airway inflammation and MUC5AC hypersecretion in asthma. We also discovered that the barrier function of asthma-like synthetic mucus toward influenza A virus was impaired as evidenced by the increased frequency of infection in MUC5AC-rich hydrogel-coated HAE cultures. Together, this work establishes a biomaterial-based approach to understand airway dysfunction in asthma and related muco-obstructive lung diseases.


Subject(s)
Asthma , Biocompatible Materials , Adult , Child , Humans , Interleukin-13 , Mucus , Respiratory Mucosa
10.
Viruses ; 12(12)2020 12 11.
Article in English | MEDLINE | ID: mdl-33322395

ABSTRACT

Respiratory viruses remain a significant cause of morbidity and mortality in the human population, underscoring the importance of ongoing basic research into virus-host interactions. However, many critical aspects of infection are difficult, if not impossible, to probe using standard cell lines, 2D culture formats, or even animal models. In vitro systems such as airway epithelial cultures at air-liquid interface, organoids, or 'on-chip' technologies allow interrogation in human cells and recapitulate emergent properties of the airway epithelium-the primary target for respiratory virus infection. While some of these models have been used for over thirty years, ongoing advancements in both culture techniques and analytical tools continue to provide new opportunities to investigate airway epithelial biology and viral infection phenotypes in both normal and diseased host backgrounds. Here we review these models and their application to studying respiratory viruses. Furthermore, given the ability of these systems to recapitulate the extracellular microenvironment, we evaluate their potential to serve as a platform for studies specifically addressing viral interactions at the mucosal surface and detail techniques that can be employed to expand our understanding.


Subject(s)
Host-Pathogen Interactions , Respiratory Mucosa/virology , Respirovirus Infections/metabolism , Respirovirus Infections/virology , Respirovirus/physiology , Cell Communication , Cell Culture Techniques , Cells, Cultured , Extracellular Space/metabolism , Models, Biological , Organoids , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Respirovirus Infections/pathology , Tissue Engineering , Virion
11.
PLoS Pathog ; 14(8): e1007280, 2018 08.
Article in English | MEDLINE | ID: mdl-30148882

ABSTRACT

Rapid development of complex membranous replication structures is a hallmark of picornavirus infections. However, neither the mechanisms underlying such dramatic reorganization of the cellular membrane architecture, nor the specific role of these membranes in the viral life cycle are sufficiently understood. Here we demonstrate that the cellular enzyme CCTα, responsible for the rate-limiting step in phosphatidylcholine synthesis, translocates from the nuclei to the cytoplasm upon infection and associates with the replication membranes, resulting in the rerouting of lipid synthesis from predominantly neutral lipids to phospholipids. The bulk supply of long chain fatty acids necessary to support the activated phospholipid synthesis in infected cells is provided by the hydrolysis of neutral lipids stored in lipid droplets. Such activation of phospholipid synthesis drives the massive membrane remodeling in infected cells. We also show that complex membranous scaffold of replication organelles is not essential for viral RNA replication but is required for protection of virus propagation from the cellular anti-viral response, especially during multi-cycle replication conditions. Inhibition of infection-specific phospholipid synthesis provides a new paradigm for controlling infection not by suppressing viral replication but by making it more visible to the immune system.


Subject(s)
Lipid Droplets/physiology , Organelles/virology , Phospholipids/metabolism , Poliovirus/physiology , Virus Replication , Cell Membrane/metabolism , Fatty Acids/metabolism , HeLa Cells , Humans , Lipid Metabolism/physiology , Lipogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...