Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 10492, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30002405

ABSTRACT

Sexual reproduction roots the eukaryotic tree of life, although its loss occurs across diverse taxa. Asexual reproduction and clonal lineages persist in these taxa despite theoretical arguments suggesting that individual clones should be evolutionarily short-lived due to limited phenotypic diversity. Here, we present quantitative evidence that an obligate asexual lineage emerged from a sexual population of the marine diatom Thalassiosira pseudonana and rapidly expanded throughout the world's oceans. Whole genome comparisons identified two lineages with characteristics expected of sexually reproducing strains in Hardy-Weinberg equilibrium. A third lineage displays genomic signatures for the functional loss of sexual reproduction followed by a recent global colonization by a single ancestral genotype. Extant members of this lineage are genetically differentiated and phenotypically plastic, potentially allowing for rapid adaptation when they are challenged by natural selection. Such mechanisms may be expected to generate new clones within marginal populations of additional unicellular species, facilitating the exploration and colonization of novel environments, aided by exponential growth and ease of dispersal.


Subject(s)
Diatoms/genetics , Evolution, Molecular , Microalgae/genetics , Reproduction, Asexual/genetics , Selection, Genetic , Oceans and Seas , Phylogeny
2.
Science ; 335(6068): 587-90, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22301318

ABSTRACT

Ecosystems are shaped by complex communities of mostly unculturable microbes. Metagenomes provide a fragmented view of such communities, but the ecosystem functions of major groups of organisms remain mysterious. To better characterize members of these communities, we developed methods to reconstruct genomes directly from mate-paired short-read metagenomes. We closed a genome representing the as-yet uncultured marine group II Euryarchaeota, assembled de novo from 1.7% of a metagenome sequenced from surface seawater. The genome describes a motile, photo-heterotrophic cell focused on degradation of protein and lipids and clarifies the origin of proteorhodopsin. It also demonstrates that high-coverage mate-paired sequence can overcome assembly difficulties caused by interstrain variation in complex microbial communities, enabling inference of ecosystem functions for uncultured members.


Subject(s)
Archaeal Proteins/genetics , Ecosystem , Euryarchaeota/genetics , Euryarchaeota/physiology , Genome, Archaeal , Metagenome , Seawater/microbiology , Archaeal Proteins/metabolism , Biota , Enzymes/genetics , Enzymes/metabolism , Euryarchaeota/classification , Euryarchaeota/metabolism , Genes, Archaeal , Genome, Bacterial , Heterotrophic Processes , Lipid Metabolism/genetics , Metabolic Networks and Pathways/genetics , Microbial Consortia , Molecular Sequence Data , Pacific Ocean , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Phylogeny , Proteins/metabolism , Rhodopsin/genetics , Rhodopsins, Microbial , Sequence Alignment , Sequence Analysis, DNA
3.
Proc Natl Acad Sci U S A ; 105(5): 1579-84, 2008 Feb 05.
Article in English | MEDLINE | ID: mdl-18212125

ABSTRACT

Formation of complex inorganic structures is widespread in nature. Diatoms create intricately patterned cell walls of inorganic silicon that are a biomimetic model for design and generation of three-dimensional silica nanostructures. To date, only relatively simple silica structures can be generated in vitro through manipulation of known diatom phosphoproteins (silaffins) and long-chain polyamines. Here, we report the use of genome-wide transcriptome analyses of the marine diatom Thalassiosira pseudonana to identify additional candidate gene products involved in the biological manipulation of silicon. Whole-genome oligonucleotide tiling arrays and tandem mass spectrometry identified transcripts for >8,000 genes, approximately 3,000 of which were not previously described and included noncoding and antisense RNAs. Gene-specific expression profiles detected a set of 75 genes induced only under low concentrations of silicon but not under low concentrations of nitrogen or iron, alkaline pH, or low temperatures. Most of these induced gene products were predicted to contain secretory signals and/or transmembrane domains but displayed no homology to known proteins. Over half of these genes were newly discovered, identified only through the use of tiling arrays. Unexpectedly, a common set of 84 genes were induced by both silicon and iron limitations, suggesting that biological manipulation of silicon may share pathways in common with iron or, alternatively, that iron may serve as a required cofactor for silicon processes. These results provide insights into the transcriptional and translational basis for the biological generation of elaborate silicon nanostructures by these ecologically important microbes.


Subject(s)
Diatoms/genetics , Gene Expression Profiling , Silicon/metabolism , Diatoms/metabolism , Gene Expression Regulation , Genome/genetics , Iron/metabolism , Iron Deficiencies , Marine Biology , Nanostructures , Nanotechnology , Oligonucleotide Array Sequence Analysis , Silicon/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...