Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Conserv Biol ; 29(3): 844-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25581070

ABSTRACT

Anecdotal evidence suggests that socioeconomic shocks strongly affect wildlife populations, but quantitative evidence is sparse. The collapse of socialism in Russia in 1991 caused a major socioeconomic shock, including a sharp increase in poverty. We analyzed population trends of 8 large mammals in Russia from 1981 to 2010 (i.e., before and after the collapse). We hypothesized that the collapse would first cause population declines, primarily due to overexploitation, and then population increases due to adaptation of wildlife to new environments following the collapse. The long-term Database of the Russian Federal Agency of Game Mammal Monitoring, consisting of up to 50,000 transects that are monitored annually, provided an exceptional data set for investigating these population trends. Three species showed strong declines in population growth rates in the decade following the collapse, while grey wolf (Canis lupus) increased by more than 150%. After 2000 some trends reversed. For example, roe deer (Capreolus spp.) abundance in 2010 was the highest of any period in our study. Likely reasons for the population declines in the 1990s include poaching and the erosion of wildlife protection enforcement. The rapid increase of the grey wolf populations is likely due to the cessation of governmental population control. In general, the widespread declines in wildlife populations after the collapse of the Soviet Union highlight the magnitude of the effects that socioeconomic shocks can have on wildlife populations and the possible need for special conservation efforts during such times.


Subject(s)
Artiodactyla/physiology , Carnivora/physiology , Conservation of Natural Resources , Animals , Population Dynamics , Russia , USSR
2.
Ecol Appl ; 23(7): 1531-43, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24261038

ABSTRACT

While the area of organic crop production increases at a global scale, the potential interactions between pest management in organic and conventionally managed systems have so far received little attention. Here, we evaluate the landscape-level codependence of insecticide-based and natural enemy-based pest management using a simulation model for parasitoid-host interactions in landscapes consisting of conventionally and organically managed fields. In our simulations conventional management consists of broad-spectrum or selective insecticide application, while organic management involves no insecticides. Simulations indicate that insecticide use can easily result in lose-lose scenarios whereby both organically and conventionally managed fields suffer from increased pest loads as compared to a scenario where no insecticides are used, but that under some conditions insecticide use can be compatible with biocontrol. Simulations also suggest that the pathway to achieve the insecticide reduction without triggering additional pest pressure is not straightforward, because increasing the proportion of organically managed fields or reducing the spray frequency in conventional fields can potentially give rise to dramatic increases in pest load. The disruptive effect of insecticide use, however, can be mitigated by spatially clustering organic fields and using selective insecticides, although the effectiveness of this mitigation depends on the behavioral traits of the biocontrol agents. Poorly dispersing parasitoids and parasitoids with high attack rates required a lower amount of organically managed fields for effective pest suppression. Our findings show that the transition from a landscape dominated by conventionally managed crops to organic management has potential pitfalls; intermediate levels of organic management may lead to higher pest burdens than either low or high adoption of organic management.


Subject(s)
Agriculture/methods , Conservation of Natural Resources/methods , Insect Control/methods , Pest Control, Biological/methods , Animals , Aphids/parasitology , Insecticides/pharmacology , Models, Biological , Wasps/physiology
3.
J Evol Biol ; 24(3): 497-504, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21126274

ABSTRACT

Flexistyly is a recently documented stylar polymorphism involving both spatial and temporal segregation of sex roles within hermaphroditic flowers. Using the experimental manipulation of stigma movement in self-compatible Alpinia mutica, we tested the hypothesis that selection for reducing interference between male and female function drives the evolution and/or maintenance of stigma movement. In experimental arrays, anaflexistylous (protogynous) flowers served as pollen donors competing for mating opportunities on cataflexistylous (protandrous) flowers. The pollen donors were either manipulated so their stigmas could not move or were left intact, and their success was determined using allozymes to assess the paternity of recipient seeds. We found that manipulated flowers sired a significantly smaller proportion of seeds, showing that stigma movement in unmanipulated plants increased male fitness. This result was strongest under conditions in which pollen competition was expected to be highest, specifically when pollinators visited multiple donor plants before visiting recipient flowers.


Subject(s)
Alpinia/anatomy & histology , Alpinia/physiology , Flowers/anatomy & histology , Flowers/physiology , Alpinia/genetics , Biological Evolution , Flowers/genetics , Pollination/genetics , Pollination/physiology , Selection, Genetic
4.
Am Nat ; 168(1): E1-14, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16874610

ABSTRACT

Ecologists frequently collect data on the patterns of association between adjacent trophic levels in the form of binary or quantitative food webs. Here, we develop statistical methods to estimate the roles of consumer and resource phylogenies in explaining patterns of consumer-resource association. We use these methods to ask whether closely related consumer species are more likely to attack the same resource species and whether closely related resource species are more likely to be attacked by the same consumer species. We then show how to use estimates of phylogenetic signals to predict novel consumer-resource associations solely from the phylogenetic position of species for which no other (or only partial) data are available. Finally, we show how to combine phylogenetic information with information about species' ecological characteristics and life-history traits to estimate the effects of species traits on consumer-resource associations while accounting for phylogenies. We illustrate these techniques using a food web comprising species of parasitoids, leaf-mining moths, and their host plants.


Subject(s)
Feeding Behavior , Food Chain , Moths/physiology , Phylogeny , Plants/classification , Wasps/physiology , Animals , Host-Parasite Interactions , Models, Biological , Models, Statistical , Moths/classification , Moths/parasitology , Plant Physiological Phenomena , Wasps/classification
5.
Nature ; 422(6927): 65-8, 2003 Mar 06.
Article in English | MEDLINE | ID: mdl-12621433

ABSTRACT

One of the few generalities in ecology, Taylor's power law, describes the species-specific relationship between the temporal or spatial variance of populations and their mean abundances. For populations experiencing constant per capita environmental variability, the regression of log variance versus log mean abundance gives a line with a slope of 2. Despite this expectation, most species have slopes of less than 2 (refs 2, 3-4), indicating that more abundant populations of a species are relatively less variable than expected on the basis of simple statistical grounds. What causes abundant populations to be less variable has received considerable attention, but an explanation for the generality of this pattern is still lacking. Here we suggest a novel explanation for the scaling of temporal variability in population abundances. Using stochastic simulation and analytical models, we demonstrate how negative interactions among species in a community can produce slopes of Taylor's power law of less than 2, like those observed in real data sets. This result provides an example in which the population dynamics of single species can be understood only in the context of interactions within an ecological community.


Subject(s)
Ecology , Models, Biological , Animals , Competitive Behavior , Computer Simulation , Food Chain , Population Dynamics , Stochastic Processes
6.
Oecologia ; 125(4): 543-548, 2000 Dec.
Article in English | MEDLINE | ID: mdl-28547224

ABSTRACT

The impact of a predator on its prey may depend on the presence of other species in the community. In particular, if predators are attracted to areas containing one prey species, another prey species may suffer greater predation if it occurs in the same areas. If the predator is omnivorous, this may occur even if one prey species is an animal and the other is a plant. We investigated the role of local dandelion densities on the impact of the predator Coleomegilla maculata on pea aphids in alfalfa fields. At small spatial scales, increased dandelion densities were associated with high C. maculata densities, presumably because these omnivorous ladybird beetles aggregated to pollen resources. In turn, the high C. maculata densities were associated with low aphid densities, presumably because of increased predation. We used laboratory cages to simulate C. maculata foraging in two adjacent patches of alfalfa, one with dandelions and one without. As in the field, the laboratory experiment showed that C. maculata aggregated to alfalfa interspersed with dandelions, which resulted in increased predation on aphids on alfalfa. This study demonstrates that a pollen-producing plant can indirectly decrease nearby herbivore densities by attracting an omnivorous predator.

7.
Science ; 286(5439): 542-4, 1999 Oct 15.
Article in English | MEDLINE | ID: mdl-10521351

ABSTRACT

Long-term variability in the abundance of populations depends on the sensitivity of species to environmental fluctuations and the amplification of environmental fluctuations by interactions among species. Although competitive interactions and species number may have diverse effects on variability measured at the individual species level, a combination of theoretical analyses shows that these factors have no effect on variability measured at the community level. Therefore, biodiversity may increase community stability by promoting diversity among species in their responses to environmental fluctuations, but increasing the number and strength of competitive interactions has little effect.


Subject(s)
Biomass , Ecosystem , Animals , Competitive Behavior , Mathematics , Models, Biological
8.
Oecologia ; 115(1-2): 287-292, 1998 Jun.
Article in English | MEDLINE | ID: mdl-28308464

ABSTRACT

The role of vision and color in close-proximity foraging behavior was investigated for four species of lady beetles: Coccinella septempunctata, Hippodamia convergens, Harmonia axyridis, and Coleomegilla maculata. The effect of light level and color cues on consumption rates varied among the four predator species. The consumption rates of these predators on the pea aphid Acyrthosiphon pisum (Harris) was measured under light and dark conditions. C. septempunctata,H. convergens, and Ha. axyridis consumed significantly more aphids in the light than in the dark, while the consumption rate of Col. maculata was not affected by light level. Foraging ability was also measured on red and green color morphs of the pea aphid on red, green, and white backgrounds. C. septempunctata consumed significantly more of the aphid morph that contrasted with the background color, and showed no difference between morphs on the white background. H. axyridis consumed significantly more red morph aphids regardless of background. The remaining two species showed no difference in consumption rates on the two color morphs. The variation in the use of visual cues demonstrates how different species of predators can exhibit different foraging behaviors when searching for the same prey.

9.
Theor Popul Biol ; 52(3): 167-78, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9466959

ABSTRACT

In nature, many insect species are attacked by more than one specialized species of parasitoid. We examine whether parasitoid aggregation among patches containing hosts can promote the coexistence of specialized parasitoids on the same host species. We construct models to analyze the effects of three types of parasitoid aggregation: direct density-dependent, inverse density-dependent, and density-independent aggregation. All three types of aggregation may facilitate coexistence, provided the parasitoid species show behavioral differences that produce different patterns of aggregation. By deriving general conditions of coexistence of parasitoids, we show that all three types of aggregation act to facilitate coexistence in the same way--by increasing the covariance between the distributions of susceptible hosts and the least common parasitoid. Although they act in the same way, in general the effect of density-independent aggregation in facilitating coexistence is greater than either direct or inverse density-dependent aggregation. This suggests that density-independent aggregation may have the greatest potential to facilitate the coexistence of specialize parasitoids using the same host.


Subject(s)
Host-Parasite Interactions , Insecta/parasitology , Animals , Competitive Behavior , Models, Theoretical , Population Density , Population Dynamics
10.
Am Nat ; 140(1): 1-29, 1992 Jul.
Article in English | MEDLINE | ID: mdl-19426063

ABSTRACT

Although there is a large literature about the effects of spatial heterogeneity and parasitoid aggregation on the population dynamics of model host-parasitoid systems, most studies deal only with hosts and parasitoids that have discrete, nonoverlapping generations. Here, I present three different models of host-parasitoid interactions in which hosts and parasitoids have overlapping generations. In two models, birth, death, and dispersal occur continuously within patches, and this makes it necessary to model population dynamics by explicitly following the internal dynamics of each patch. These models are similar in structure to metapopulation models of predator-prey systems, and their stability properties can be explained in terms of asynchrony in the population fluctuations of each of the constituent patches. In the third model, the global population dynamics depend on the instantaneous distributions of hosts and parasitoids among patches rather than on continuous dispersal. The stability properties of this model are very similar to those of corresponding models with nonoverlapping generations; stability arises from variability in the chance that a given host is parasitized. The influence of spatial heterogeneity and parasitoid aggregation on population dynamics is different for each model, which thus demonstrates the complexity of predicting population dynamics in continuous-time models of host-parasitoid systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...