Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med ; 4(8): 554-579.e9, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37572651

ABSTRACT

BACKGROUND: The human endometrium undergoes recurring cycles of growth, differentiation, and breakdown in response to sex hormones. Dysregulation of epithelial-stromal communication during hormone-mediated signaling may be linked to myriad gynecological disorders for which treatments remain inadequate. Here, we describe a completely defined, synthetic extracellular matrix that enables co-culture of human endometrial epithelial and stromal cells in a manner that captures healthy and disease states across a simulated menstrual cycle. METHODS: We parsed cycle-dependent endometrial integrin expression and matrix composition to define candidate cell-matrix interaction cues for inclusion in a polyethylene glycol (PEG)-based hydrogel crosslinked with matrix metalloproteinase-labile peptides. We semi-empirically screened a parameter space of biophysical and molecular features representative of the endometrium to define compositions suitable for hormone-driven expansion and differentiation of epithelial organoids, stromal cells, and co-cultures of the two cell types. FINDINGS: Each cell type exhibited characteristic morphological and molecular responses to hormone changes when co-encapsulated in hydrogels tuned to a stiffness regime similar to the native tissue and functionalized with a collagen-derived adhesion peptide (GFOGER) and a fibronectin-derived peptide (PHSRN-K-RGD). Analysis of cell-cell crosstalk during interleukin 1B (IL1B)-induced inflammation revealed dysregulation of epithelial proliferation mediated by stromal cells. CONCLUSIONS: Altogether, we demonstrate the development of a fully synthetic matrix to sustain the dynamic changes of the endometrial microenvironment and support its applications to understand menstrual health and endometriotic diseases. FUNDING: This work was supported by The John and Karine Begg Foundation, the Manton Foundation, and NIH U01 (EB029132).


Subject(s)
Endometrium , Extracellular Matrix , Female , Humans , Coculture Techniques , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Endometrium/metabolism , Peptides/analysis , Peptides/chemistry , Peptides/metabolism , Hormones/analysis , Hormones/metabolism
2.
Cells ; 11(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35954211

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease resulting in limited mobility and severe disability. Type II diabetes mellitus (T2D) is a weight-independent risk factor for OA, but a link between the two diseases has not been elucidated. Adipose stem cells (ASCs) isolated from the infrapatellar fat pad (IPFP) may be a viable regenerative cell for OA treatment. This study analyzed the expression profiles of inflammatory and adipokine-related genes in IPFP-ASCs of non-diabetic (Non-T2D), pre-diabetic (Pre-T2D), and T2D donors. Pre-T2D ASCs exhibited a substantial decrease in levels of mesenchymal markers CD90 and CD105 with no change in adipogenic differentiation compared to Non-T2D and T2D IPFP-ASCs. In addition, Cyclooxygenase-2 (COX-2), Forkhead box G1 (FOXG1) expression and prostaglandin E2 (PGE2) secretion were significantly increased in Pre-T2D IPFP-ASCs upon stimulation by interleukin-1 beta (IL-1ß). Interestingly, M1 macrophages exhibited a significant reduction in expression of pro-inflammatory markers TNFα and IL-6 when co-cultured with Pre-T2D IPFP-ASCs. These data suggest that the heightened systemic inflammation associated with untreated T2D may prime the IPFP-ASCs to exhibit enhanced anti-inflammatory characteristics via suppressing the IL-6/COX-2 signaling pathway. In addition, the elevated production of PGE2 by the Pre-T2D IPFP-ASCs may also suggest the contribution of pre-diabetic conditions to the onset and progression of OA.


Subject(s)
Cyclooxygenase 2 , Diabetes Mellitus, Type 2 , Forkhead Transcription Factors/genetics , Prediabetic State , Adipose Tissue/metabolism , Biomarkers/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Diabetes Mellitus, Type 2/metabolism , Dinoprostone/metabolism , Forkhead Transcription Factors/metabolism , Humans , Interleukin-6/metabolism , Nerve Tissue Proteins/metabolism , Stem Cells
3.
Neurooncol Adv ; 4(1): vdac049, 2022.
Article in English | MEDLINE | ID: mdl-35669012

ABSTRACT

Background: Pediatric gliomas comprise a diverse set of brain tumor entities that have substantial long-term ramifications for patient survival and quality of life. However, the study of these tumors is currently limited due to a lack of authentic models. Additionally, many aspects of pediatric brain tumor biology, such as tumor cell invasiveness, have been difficult to study with currently available tools. To address these issues, we developed a synthetic extracellular matrix (sECM)-based culture system to grow and study primary pediatric brain tumor cells. Methods: We developed a brain-like sECM material as a supportive scaffold for the culture of primary, patient-derived pediatric glioma cells and established patient-derived cell lines. Primary juvenile brainstem-derived murine astrocytes were used as a feeder layer to support the growth of primary human tumor cells. Results: We found that our culture system facilitated the proliferation of various primary pediatric brain tumors, including low-grade gliomas, and enabled ex vivo testing of investigational therapeutics. Additionally, we found that tuning this sECM material allowed us to assess high-grade pediatric glioma cell invasion and evaluate therapeutic interventions targeting invasive behavior. Conclusion: Our sECM culture platform provides a multipurpose tool for pediatric brain tumor researchers that enables both a wide breadth of biological assays and the cultivation of diverse tumor types.

4.
Semin Reprod Med ; 38(2-03): 179-196, 2020 05.
Article in English | MEDLINE | ID: mdl-33176387

ABSTRACT

Adenomyosis remains an enigmatic disease in the clinical and research communities. The high prevalence, diversity of morphological and symptomatic presentations, array of potential etiological explanations, and variable response to existing interventions suggest that different subgroups of patients with distinguishable mechanistic drivers of disease may exist. These factors, combined with the weak links to genetic predisposition, make the entire spectrum of the human condition challenging to model in animals. Here, after an overview of current approaches, a vision for applying physiomimetic modeling to adenomyosis is presented. Physiomimetics combines a system's biology analysis of patient populations to generate hypotheses about mechanistic bases for stratification with in vitro patient avatars to test these hypotheses. A substantial foundation for three-dimensional (3D) tissue engineering of adenomyosis lesions exists in several disparate areas: epithelial organoid technology; synthetic biomaterials matrices for epithelial-stromal coculture; smooth muscle 3D tissue engineering; and microvascular tissue engineering. These approaches can potentially be combined with microfluidic platform technologies to model the lesion microenvironment and can potentially be coupled to other microorgan systems to examine systemic effects. In vitro patient-derived models are constructed to answer specific questions leading to target identification and validation in a manner that informs preclinical research and ultimately clinical trial design.


Subject(s)
Adenomyosis/pathology , Models, Biological , Tissue Engineering/methods , Endometrium/pathology , Female , Humans , Myometrium/pathology
5.
Biomolecules ; 10(7)2020 07 17.
Article in English | MEDLINE | ID: mdl-32709032

ABSTRACT

Osteoarthritis (OA) is a common joint disorder with a significant economic and healthcare impact. The knee joint is composed of cartilage and the adjoining bone, a synovial capsule, the infrapatellar fat pad (IPFP), and other connective tissues such as tendons and ligaments. Adipose tissue has recently been highlighted as a major contributor to OA through strong inflammation mediating effects. In this study, methacrylated gelatin (GelMA) constructs seeded with adipose tissue-derived mesenchymal stem cells (ASCs) and cultured in a 3D printed bioreactor were investigated for use in microphysiological systems to model adipose tissue in the knee joint. Four patient-derived ASC populations were seeded at a density of 20 million cells/mL in GelMA. Live/Dead and boron-dipyrromethene/4',6-diamidino-2-phenylindole (BODIPY/DAPI) staining of cells within the constructs demonstrated robust cell viability after 28 days in a growth (control) medium, and robust cell viability and lipid accumulation in adipogenic differentiation medium. qPCR gene expression analysis and protein analysis demonstrated an upregulated expression of key adipogenesis-associated genes. Overall, these data indicate that ASCs retain their adipogenic potential when seeded within GelMA hydrogels and cultured within perfusion bioreactors, and thus can be used in a 3D organ-on-a-chip system to study the role of the IPFP in the pathobiology of the knee OA.


Subject(s)
Adipocytes/cytology , Adipogenesis , Bioreactors , Hydrogels/chemistry , Mesenchymal Stem Cells/cytology , Cell Culture Techniques/instrumentation , Cell Line , Cells, Immobilized/cytology , Equipment Design , Humans
6.
Article in English | MEDLINE | ID: mdl-31134194

ABSTRACT

Despite the success of tissue engineered medical products (TEMPs) in preclinical translational research, very few have had success in the clinical market place. This gap, referred to as the "valley of death" is due to the large number of ventures that failed to attract or retain investor funding, promotion, and clinical acceptance of their products. This loss can be attributed to a focus on a bench to bedside flow of ideas and technology, which does not account for the multitude of adoption, commercial, and regulatory constraints. The implementation of an alternative bedside to bench and back again approach permits investigators to focus on a specific unmet clinical need, defining crucial translation related questions early in the research process. Investigators often fail to accurately identify critical clinical adoption criteria due to their focus on improved patient outcomes. Other adoption criteria (such as price, time, ethical concerns, and place in the workflow) can cause a product to fail despite improved patient outcomes. By applying simplified business principles such as the build-measure-learn loop and the business model canvas to early-stage research projects, investigators can narrow in on appropriate research topics and define design constraints. Additionally, 86% of all clinical trials fail to result in Federal Drug Administration approval, resulting in significant economic burdens. On the reverse side, approval through the European Medical Agency is widely considered to be more direct but has its challenges. The Committee for Advanced Therapies within the European Medical Agency has received 22 market authorization applications for advanced therapy medicinal products, of which only 10 received authorization. A thorough understanding of the various regulatory pathways permits investigators to plan for future regulatory obstacles and potentially increase their chances of success. By utilizing a bedside to bench and back again approach, investigators can improve the odds that their research will have a meaningful clinical impact.

SELECTION OF CITATIONS
SEARCH DETAIL
...