Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 20(5): 990-5, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12382964

ABSTRACT

Little is known about the contribution of innervation to ligament healing after traumatic disruption, although there is good evidence of an important role for the peripheral nervous system in the healing of fractures and skin injuries. Tissues such as ligament, with a low resting blood supply, are dependent on substantial increases in blood flow and vascular volume during the initial stages of repair. We hypothesized that this initial healing response would be strongly promoted by neurogenic inflammation. Since the saphenous nerve (a major sensory branch of the femoral nerve) supplies the medial half of the knee joint, we elected to use femoral nerve transection as a model to determine the role of sensory and autonomic innervation in the initial outcome of repair of the injured medial collateral ligament. Twelve adult, female NZW rabbits underwent right medial collateral ligament transection. Of these, six rabbits underwent right femoral nerve transection to disrupt the somatic sensory and autonomic nerve supply to the knee joint and six were kept neurologically intact (controls). At six weeks post-injury, the animals were assessed by laser Doppler perfusion imaging (LDI) to determine the local blood flow, at both the injury site and at the uninjured contralateral ligament. The animals were then killed, the knee joints were removed and the biomechanical characteristics of the healing bone-median collateral ligament (MCL)-bone complexes assessed. In a separate cohort of 16 rabbits, vascular volumes of the injured ligaments were measured by infusion of a carmine red/gelatin solution. At six weeks post-injury, in vivo measurement of perfusion with LDI revealed that normally innervated ligaments had an almost three-fold higher average blood flow. Carmine red/gelatin infusion revealed a 50% higher density of blood vessels as compared to denervated ligaments. The force required for ultimate failure was found to be 50% higher in normally innnervated MCL's as compared to denervated MCL's: 153.14 +/- 20.71 N versus 101.29 +/- 17.88 N (p < 0.05). Static creep was increased by 66% in denervated MCL's: 2.83 +/- 0.45% versus 1.70 +/- 0.12% (p < 0.05). Total creep was increased by 45% in denervated MCL's: 5.29 +/- 0.62% compared to 3.64 +/- 0.31% in innervated MCL's (p < 0.05). We conclude that intact innervation makes a critical contribution to the early healing responses of the MCL of adult rabbits.


Subject(s)
Medial Collateral Ligament, Knee/innervation , Wound Healing/physiology , Animals , Biomechanical Phenomena , Denervation , Female , Femoral Nerve/surgery , Medial Collateral Ligament, Knee/blood supply , Medial Collateral Ligament, Knee/physiopathology , Microcirculation , Rabbits , Regional Blood Flow
2.
Histol Histopathol ; 17(2): 523-37, 2002 04.
Article in English | MEDLINE | ID: mdl-11962757

ABSTRACT

The term connective tissue encompasses a diverse group of tissues that reside in different environments and must support a spectrum of mechanical functions. Although the extracellular matrix of these tissues is well described, the cellular architecture of these tissues and its relationship to tissue function has only recently become the focus of study. It now appears that tensile-bearing dense connective tissues may be a specific class of connective tissues that display a common cellular organization characterized by fusiform cells with cytoplasmic projections and gap junctions. These cells with their cellular projections are organised into a complex 3-dimensional network leading to a physically, chemically and electrically connected cellular matrix. The cellular matrix may play essential roles in extracellular matrix formation, maintenance and remodelling, mechanotransduction and during injury and healing. Thus, it is likely that it is the interaction of both the extracellular matrix and cellular matrix that provides the basis for tissue function. Restoration of both these matrices, as well as their interaction must be the goal of strategies to repair these connective tissues damaged by either injury or disease.


Subject(s)
Connective Tissue/anatomy & histology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...